54 research outputs found

    Lung Cancer in Pulmonary Fibrosis: Tales of Epithelial Cell Plasticity

    Get PDF
    Lung epithelial cells exhibit a high degree of plasticity. Alterations to lung epithelial cell function are critically involved in several chronic lung diseases such as pulmonary fibrosis. Pulmonary fibrosis is characterized by repetitive injury and subsequent impaired repair of epithelial cells, which leads to aberrant growth factor activation and fibroblast accumulation. Increased proliferation and hyper- and metaplasia of epithelial cells upon injury have also been observed in pulmonary fibrosis; this epithelial cell activation might represent the basis for lung cancer development. Indeed, several studies have provided histopathological evidence of an increased incidence of lung cancer in pulmonary fibrosis. The mechanisms involved in the development of cancer in pulmonary fibrosis, however, remain poorly understood. This review highlights recently uncovered molecular mechanisms shared between lung cancer and fibrosis, which extend the current evidence of a common trait of cancer and fibrosis, as provided by histopathological observations. Copyright (C) 2011 S. Karger AG, Base

    Variation in MSRA Modifies Risk of Neonatal Intestinal Obstruction in Cystic Fibrosis

    Get PDF
    Meconium ileus (MI), a life-threatening intestinal obstruction due to meconium with abnormal protein content, occurs in approximately 15 percent of neonates with cystic fibrosis (CF). Analysis of twins with CF demonstrates that MI is a highly heritable trait, indicating that genetic modifiers are largely responsible for this complication. Here, we performed regional family-based association analysis of a locus that had previously been linked to MI and found that SNP haplotypes 5′ to and within the MSRA gene were associated with MI (P = 1.99×10−5 to 1.08×10−6; Bonferroni P = 0.057 to 3.1×10−3). The haplotype with the lowest P value showed association with MI in an independent sample of 1,335 unrelated CF patients (OR = 0.72, 95% CI [0.53–0.98], P = 0.04). Intestinal obstruction at the time of weaning was decreased in CF mice with Msra null alleles compared to those with wild-type Msra resulting in significant improvement in survival (P = 1.2×10−4). Similar levels of goblet cell hyperplasia were observed in the ilea of the Cftr−/− and Cftr−/−Msra−/− mice. Modulation of MSRA, an antioxidant shown to preserve the activity of enzymes, may influence proteolysis in the developing intestine of the CF fetus, thereby altering the incidence of obstruction in the newborn period. Identification of MSRA as a modifier of MI provides new insight into the biologic mechanism of neonatal intestinal obstruction caused by loss of CFTR function

    WNT1 inducible signaling pathway protein 1 (WISP1): A novel mediator linking development and disease.

    No full text
    WISP1 is a secreted, matricellular protein allocated to the CCN protein family. The CCN protein family consists of six, modular structured, secreted proteins. WISP1 is mainly expressed during organ development and under diseased conditions, such as fibrosis or cancer. Its expression is associated with proliferation, cytoprotection, as well as extracellular matrix production, thereby representing a highly attractive therapeutical target for future applications

    miR-92a regulates TGF-β1-induced WISP1 expression in pulmonary fibrosis.

    No full text
    Idiopathic pulmonary fibrosis (IPF) is the most common and fatal form of idiopathic interstitial pneumonia. MicroRNAs (miRNAs), short, single-stranded RNAs that regulate protein expression in a post-transcriptional manner, have recently been demonstrated to contribute to IPF pathogenesis. We have previously identified WNT1-inducible signaling pathway protein 1 (WISP1) as a highly expressed pro-fibrotic mediator in IPF, but the underlying mechanisms resulting in increased WISP1 expression, remain elusive. Here, we investigated whether WISP1 is a target of miRNA regulation. We applied a novel supervised machine learning approach, which predicted miR-30a/d and miR-92a target sites in regions of the human WISP1 3'UTR preferentially bound by the miRNA ribonucleoprotein complex. Both miRNAs were decreased in IPF samples, whereas WISP1 protein was increased. We demonstrated further that transforming growth factor (TGF)-β1-induced WISP1 expression in primary lung fibroblasts in vitro and lung homogenates in vivo. Notably, miR-30a and miR-92a reversed TGF-β1-induced WISP1 mRNA expression in lung fibroblasts. Moreover, miR-92a inhibition increased WISP1 protein expression in lung fibroblasts. An inverse relationship for WISP1 and miR-92a was found in a TGF-β1 dependent lung fibrosis model in vivo. Finally, we found significantly increased WISP1 expression in primary IPF fibroblasts, which negatively correlated with miR-92a level ex vivo. Altogether, our findings indicate a regulatory role of miR-92a for WISP1 expression in pulmonary fibrosis

    Mitochondria! Regulation of the 26S Proteasome

    No full text
    The proteasome is the main proteolytic system for targeted protein degradation in the cell and is fine-tuned according to cellular needs. Here, we demonstrate that mitochondrial dysfunction and concomitant metabolic reprogramming of the tricarboxylic acid (TCA) cycle reduce the assembly and activity of the 26S proteasome. Both mitochondrial mutations in respiratory complex I and treatment with the anti-diabetic drug metformin impair 26S proteasome activity. Defective 26S assembly is reversible and can be overcome by supplementation of aspartate or pyruvate. This metabolic regulation of 26S activity involves specific regulation of proteasome assembly factors via the mTORC1 pathway. Of note, reducing 26S activity by metformin confers increased resistance toward the proteasome inhibitor bortezomib, which is reversible upon pyruvate supplementation. Our study uncovers unexpected consequences of defective mitochondrial metabolism for proteasomal protein degradation in the cell, which has important pathophysiological and therapeutic implications

    Subperiodic trigonometric hyperinterpolation

    No full text
    Using recent results on subperiodic trigonometric Gaussian quadrature and the construction of subperiodic trigonometric orthogonal bases, we extend Sloan\u2019s notion of hyperinterpolation to trigonometric spaces on subintervals of the period. The result is relevant, for example, to function approximation on spherical or toroidal rectangles
    corecore