1,652 research outputs found

    Two-dimensional arrays of low capacitance tunnel junctions: general properties, phase transitions and Hall effect

    Full text link
    We describe transport properties of two-dimensional arrays of low capacitance tunnel junctions, such as the current voltage characteristic and its dependence on external magnetic field and temperature. We discuss several experiments in which the small capacitance of the junctions plays an important role. In arrays where the junctions have a relatively large charging energy, (i.e. when they have a low capacitance) and a high normal state resistance, the low bias resistance increases with decreasing temperature and eventually at very low temperature the array becomes insulating even though the electrodes in the array are superconducting. This transition to the insulating state can be described by thermal activation. In an intermediate region where the junction resistance is of the order of the quantum resistance and the charging energy is of the order of the Josephson coupling energy, the arrays can be tuned between a superconducting and an insulating state with a magnetic field. We describe measurements of this magnetic-field-tuned superconductor insulator transition, and we show that the resistance data can be scaled over several orders of magnitude. Four arrays follow the same universal function. At the transition the transverse (Hall) resistance is found to be very small in comparison with the longitudinal resistance. However, for magnetic field values larger than the critical value.we observe a substantial Hall resistance. The Hall resistance of these arrays oscillates with the applied magnetic field. features in the magnetic field dependence of the Hall resistance can qualitatively be correlated to features in the derivative of the longitudinal resistance, similar to what is found in the quantum Hall effect.Comment: 29 pages, 16 eps figures, uses aipproc.sty and epsfig.sty, contribution to Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in Siena, Italy (8-20 september 1997

    No Evidence for More Earth-sized Planets in the Habitable Zone of Kepler's M versus FGK Stars

    Full text link
    Reliable detections of Earth-sized planets in the habitable zone remain elusive in the Kepler sample, even for M dwarfs. The Kepler sample was once thought to contain a considerable number of M dwarf stars (Teff<4000T_\mathrm{eff} < 4000 K), which hosted enough Earth-sized ([0.5,1.5][0.5,1.5] R_\oplus) planets to estimate their occurrence rate (η\eta_\oplus) in the habitable zone. However, updated stellar properties from Gaia have shifted many Kepler stars to earlier spectral type classifications, with most stars (and their planets) now measured to be larger and hotter than previously believed. Today, only one partially-reliable Earth-sized candidate remains in the optimistic habitable zone, and zero in the conservative zone. Here we performed a new investigation of Kepler's Earth-sized planets orbiting M dwarf stars, using occurrence rate models with considerations of updated parameters and candidate reliability. Extrapolating our models to low instellations, we found an occurrence rate of η=8.588.22+17.94%\eta_\oplus={8.58}_{-8.22}^{+17.94}\% for the conservative habitable zone (and 14.2212.71+24.96%{14.22}_{-12.71}^{+24.96}\% for the optimistic), consistent with previous works when considering the large uncertainties. Comparing these estimates to those from similarly comprehensive studies of Sun-like stars, we found that the current Kepler sample does not offer evidence to support an increase in η\eta_\oplus from FGK to M stars. While the Kepler sample is too sparse to resolve an occurrence trend between early and mid-to-late M dwarfs for Earth-sized planets, studies including larger planets and/or data from the K2 and TESS missions are well-suited to this task.Comment: 22 pages, 11 figures, 2 tables; Accepted for publication in A

    Glucose metabolism and oscillatory behavior of pancreatic islets

    Full text link
    A variety of oscillations are observed in pancreatic islets.We establish a model, incorporating two oscillatory systems of different time scales: One is the well-known bursting model in pancreatic beta-cells and the other is the glucose-insulin feedback model which considers direct and indirect feedback of secreted insulin. These two are coupled to interact with each other in the combined model, and two basic assumptions are made on the basis of biological observations: The conductance g_{K(ATP)} for the ATP-dependent potassium current is a decreasing function of the glucose concentration whereas the insulin secretion rate is given by a function of the intracellular calcium concentration. Obtained via extensive numerical simulations are complex oscillations including clusters of bursts, slow and fast calcium oscillations, and so on. We also consider how the intracellular glucose concentration depends upon the extracellular glucose concentration, and examine the inhibitory effects of insulin.Comment: 11 pages, 16 figure

    Effect of floor type on the performance, physiological and behavioural responses of finishing beef steers

    Get PDF
    peer-reviewedBackground:The study objective was to investigate the effect of bare concrete slats (Control), two types of mats [(Easyfix mats (mat 1) and Irish Custom Extruder mats (mat 2)] fitted on top of concrete slats, and wood-chip to simulate deep bedding (wood-chip placed on top of a plastic membrane overlying the concrete slats) on performance, physiological and behavioral responses of finishing beef steers. One-hundred and forty-four finishing steers (503 kg; standard deviation 51.8 kg) were randomly assigned according to their breed (124 Continental cross and 20 Holstein–Friesian) and body weight to one of four treatments for 148 days. All steers were subjected to the same weighing, blood sampling (jugular venipuncture), dirt and hoof scoring pre study (day 0) and on days 23, 45, 65, 86, 107, 128 and 148 of the study. Cameras were fitted over each pen for 72 h recording over five periods and subsequent 10 min sampling scans were analysed. Results: Live weight gain and carcass characteristics were similar among treatments. The number of lesions on the hooves of the animals was greater (P < 0.05) on mats 1 and 2 and wood-chip treatments compared with the animals on the slats. Dirt scores were similar for the mat and slat treatments while the wood-chip treatment had greater dirt scores. Animals housed on either slats or wood-chip had similar lying times. The percent of animals lying was greater for animals housed on mat 1 and mat 2 compared with those housed on concrete slats and wood chips. Physiological variables showed no significant difference among treatments. Conclusions: In this exploratory study, the performance or welfare of steers was not adversely affected by slats, differing mat types or wood-chip as underfoot material

    Phylogeny of Diving Beetles Reveals a Coevolutionary Arms Race between the Sexes

    Get PDF
    BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles

    Primary thermometry in the intermediate Coulomb blockade regime

    Full text link
    We investigate Coulomb blockade thermometers (CBT) in an intermediate temperature regime, where measurements with enhanced accuracy are possible due to the increased magnitude of the differential conductance dip. Previous theoretical results show that corrections to the half width and to the depth of the measured conductance dip of a sensor are needed, when leaving the regime of weak Coulomb blockade towards lower temperatures. In the present work, we demonstrate experimentally that the temperature range of a CBT sensor can be extended by employing these corrections without compromising the primary nature or the accuracy of the thermometer.Comment: 8 pages, 4 figure

    Practising Mathematics Teacher Education: Expanding The Realm of Possibilities

    Get PDF
    It is often said that student teachers’ underlying beliefs of what mathematics consists of and how it should be taught are restricted in two ways. On the one hand, future elementary teachers in general use only weak mathematical conceptions, which often do not help them to realise their educational ambitions. On a general educational level, many of these students advocate discovery learning and collective problem solving, but when it comes down to the mathematical activities that have to be prepared, their experience of “traditional” school mathematics is of little help. On the other hand, future (higher) secondary teachers mostly are very well prepared with respect to formal academic mathematics when entering mathematics education programmes, either because they have already passed a mathematical formation at university or because their teacher education programmes emphasise the study of academic mathematics and not of educational or didactical modules

    Scaling K2 VII: Evidence for a high occurrence rate of hot sub-Neptunes at intermediate ages

    Full text link
    The NASA K2 mission obtained high precision time-series photometry for four young clusters, including the near-twin 600-800 Myr-old Praesepe and Hyades clusters. Hot sub-Neptunes are highly prone to mass-loss mechanisms, given their proximity to the the host star and the weakly bound gaseous envelopes, and analyzing this population at young ages can provide strong constraints on planetary evolution models. Using our automated transit detection pipeline, we recover 15 planet candidates across the two clusters, including 10 previously confirmed planets. We find a hot sub-Neptune occurrence rate of 79-107% for GKM stars in the Praesepe cluster. This is 2.5-3.5 sigma higher than the occurrence rate of 16.54+1.00-0.98% for the same planets orbiting the ~3-9 Gyr-old GKM field stars observed by K2, even after accounting for the slightly super-solar metallicity ([Fe/H]~0.2 dex) of the Praesepe cluster. We examine the effect of adding ~100 targets from the Hyades cluster, and extending the planet parameter space under examination, and find similarly high occurrence rates in both cases. The high occurrence rate of young, hot sub-Neptunes could indicate either that these planets are undergoing atmospheric evolution as they age, or that planetary systems that formed when the Galaxy was much younger are substantially different than from today. Under the assumption of the atmospheric mass-loss scenario, a significantly higher occurrence rate of these planets at the intermediate ages of Praesepe and Hyades appears more consistent with the core-powered mass loss scenario sculpting the hot sub-Neptune population, compared to the photoevaporation scenario.Comment: 14 pages, 6 figures, published in A

    Using Photometrically-Derived Properties of Young Stars to Refine TESS's Transiting Young Planet Survey Completeness

    Full text link
    The demographics of young exoplanets can shed light onto their formation and evolution processes. Exoplanet properties are derived from the properties of their host stars. As such, it is important to accurately characterize the host stars since any systematic biases in their derivation can negatively impact the derivation of planetary properties. Here, we present a uniform catalog of photometrically-derived stellar effective temperatures, luminosities, radii, and masses for 4,865 young (<1 Gyr) stars in 31 nearby clusters and moving groups within 200 pc. We compared our photometrically-derived properties to a subset of those derived from spectra, and found them to be in good agreement. We also investigated the effect of stellar properties on the detection efficiency of transiting short-period young planets with TESS as calculated in Fernandes et al. 2022, and found an overall increase in the detection efficiency when the new photometrically derived properties were taken into account. Most notably, there is a 1.5 times increase in the detection efficiencies for sub-Neptunes/Neptunes (1.8-6 Re) implying that, for our sample of young stars, better characterization of host star properties can lead to the recovery of more small transiting planets. Our homogeneously derived catalog of updated stellar properties, along with a larger unbiased stellar sample and more detections of young planets, will be a crucial input to the accurate estimation of the occurrence rates of young short-period planets.Comment: 16 pages, 5 Figures, 3 Tables. Revised and resubmitted to AJ after a favorable referee report. Co-First Author
    corecore