111 research outputs found

    The role of localization in glasses and supercooled liquids

    Get PDF
    This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/104/13/10.1063/1.471147.Localized excitations (tunneling modes, soft harmonic vibrations) are believed to play a dominant role in the thermodynamics and transport properties of glasses at low temperature. Using instantaneous normal‐mode (INM) analysis, we explore the role that such localization plays in determining the behavior of such systems in the vicinity of the glass transition. Building on our previous study [Phys. Rev. Lett. 74, 936 (1995)] we present evidence that the glass transition in two simple model systems is associated with a transition temperature below which all un‐ stable INM’s become localized. This localization transition is a possible mechanism for the change in diffusion mechanism from continuous flow to localized hopping that is believed to occur in fragile glass formers at a temperature just above T g

    Entropy, Dynamics and Instantaneous Normal Modes in a Random Energy Model

    Full text link
    It is shown that the fraction f of imaginary frequency instantaneous normal modes (INM) may be defined and calculated in a random energy model(REM) of liquids. The configurational entropy S and the averaged hopping rate among the states R are also obtained and related to f, with the results R~f and S=a+b*ln(f). The proportionality between R and f is the basis of existing INM theories of diffusion, so the REM further confirms their validity. A link to S opens new avenues for introducing INM into dynamical theories. Liquid 'states' are usually defined by assigning a configuration to the minimum to which it will drain, but the REM naturally treats saddle-barriers on the same footing as minima, which may be a better mapping of the continuum of configurations to discrete states. Requirements of a detailed REM description of liquids are discussed

    Saddles in the energy landscape probed by supercooled liquids

    Full text link
    We numerically investigate the supercooled dynamics of two simple model liquids exploiting the partition of the multi-dimension configuration space in basins of attraction of the stationary points (inherent saddles) of the potential energy surface. We find that the inherent saddles order and potential energy are well defined functions of the temperature T. Moreover, decreasing T, the saddle order vanishes at the same temperature (T_MCT) where the inverse diffusivity appears to diverge as a power law. This allows a topological interpretation of T_MCT: it marks the transition from a dynamics between basins of saddles (T>T_MCT) to a dynamics between basins of minima (T<T_MCT).Comment: 4 pages, 3 figures, to be published on PR

    Energy landscape of a Lennard-Jones liquid: Statistics of stationary points

    Full text link
    Molecular dynamics simulations are used to generate an ensemble of saddles of the potential energy of a Lennard-Jones liquid. Classifying all extrema by their potential energy u and number of unstable directions k, a well defined relation k(u) is revealed. The degree of instability of typical stationary points vanishes at a threshold potential energy, which lies above the energy of the lowest glassy minima of the system. The energies of the inherent states, as obtained by the Stillinger-Weber method, approach the threshold energy at a temperature close to the mode-coupling transition temperature Tc.Comment: 4 RevTeX pages, 6 eps figures. Revised versio

    Mean-atom-trajectory model for the velocity autocorrelation function of monatomic liquids

    Full text link
    We present a model for the motion of an average atom in a liquid or supercooled liquid state and apply it to calculations of the velocity autocorrelation function Z(t)Z(t) and diffusion coefficient DD. The model trajectory consists of oscillations at a distribution of frequencies characteristic of the normal modes of a single potential valley, interspersed with position- and velocity-conserving transits to similar adjacent valleys. The resulting predictions for Z(t)Z(t) and DD agree remarkably well with MD simulations of Na at up to almost three times its melting temperature. Two independent processes in the model relax velocity autocorrelations: (a) dephasing due to the presence of many frequency components, which operates at all temperatures but which produces no diffusion, and (b) the transit process, which increases with increasing temperature and which produces diffusion. Because the model provides a single-atom trajectory in real space and time, including transits, it may be used to calculate all single-atom correlation functions.Comment: LaTeX, 8 figs. This is an updated version of cond-mat/0002057 and cond-mat/0002058 combined Minor changes made to coincide with published versio

    Harmonic Vibrational Excitations in Disordered Solids and the "Boson Peak"

    Full text link
    We consider a system of coupled classical harmonic oscillators with spatially fluctuating nearest-neighbor force constants on a simple cubic lattice. The model is solved both by numerically diagonalizing the Hamiltonian and by applying the single-bond coherent potential approximation. The results for the density of states g(ω)g(\omega) are in excellent agreement with each other. As the degree of disorder is increased the system becomes unstable due to the presence of negative force constants. If the system is near the borderline of stability a low-frequency peak appears in the reduced density of states g(ω)/ω2g(\omega)/\omega^2 as a precursor of the instability. We argue that this peak is the analogon of the "boson peak", observed in structural glasses. By means of the level distance statistics we show that the peak is not associated with localized states

    Molecular structural order and anomalies in liquid silica

    Full text link
    The present investigation examines the relationship between structural order, diffusivity anomalies, and density anomalies in liquid silica by means of molecular dynamics simulations. We use previously defined orientational and translational order parameters to quantify local structural order in atomic configurations. Extensive simulations are performed at different state points to measure structural order, diffusivity, and thermodynamic properties. It is found that silica shares many trends recently reported for water [J. R. Errington and P. G. Debenedetti, Nature 409, 318 (2001)]. At intermediate densities, the distribution of local orientational order is bimodal. At fixed temperature, order parameter extrema occur upon compression: a maximum in orientational order followed by a minimum in translational order. Unlike water, however, silica's translational order parameter minimum is broad, and there is no range of thermodynamic conditions where both parameters are strictly coupled. Furthermore, the temperature-density regime where both structural order parameters decrease upon isothermal compression (the structurally anomalous regime) does not encompass the region of diffusivity anomalies, as was the case for water.Comment: 30 pages, 8 figure

    String-like Clusters and Cooperative Motion in a Model Glass-Forming Liquid

    Full text link
    A large-scale molecular dynamics simulation is performed on a glass-forming Lennard-Jones mixture to determine the nature of dynamical heterogeneities which arise in this model fragile liquid. We observe that the most mobile particles exhibit a cooperative motion in the form of string-like paths (``strings'') whose mean length and radius of gyration increase as the liquid is cooled. The length distribution of the strings is found to be similar to that expected for the equilibrium polymerization of linear polymer chains.Comment: 6 pages of RevTex, 6 postscript figures, uses epsf.st
    • 

    corecore