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The role of localization in glasses and supercooled liquids

Scott D. Bembenek and Brian B. Laird®
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Localized excitationgtunneling modes, soft harmonic vibratiorare believed to play a dominant

role in the thermodynamics and transport properties of glasses at low temperature. Using
instantaneous normal-mod@¢NM) analysis, we explore the role that such localization plays

in determining the behavior of such systems in the vicinity of the glass transition. Building on
our previous studyPhys. Rev. Lett74, 936 (1995] we present evidence that the glass transition

in two simple model systems is associated with a transition temperature below which all un-
stable INM's become localized. This localization transition is a possible mechanism for the
change in diffusion mechanism from continuous flow to localized hopping that is believed
to occur in fragile glass formers at a temperature just abique © 1996 American Institute of
Physics[S0021-960806)50513-3

I. INTRODUCTION The paper is organized as follows: In Sec. II, we briefly
) review the properties of glasses, with particular attention to
Glasses and amorphous solids are among the most Ulthe |ow-temperature anomalies and to the behavior near the
quitous and technologically useful of materials. In spite ofgass transition. An introduction to instantaneous normal
this, however, they remain poorly understood, especially innoges is given is Sec. Ill. Results for two model systems
comparison to what is currently known about the thermodyqnteracting with an inverse-sixth power repulsion and the

namically stable condensed phases of matter: liquids andennard-Jones potential are presented in Sec. IV and V, re-
crystals. In addition to the simultaneous lack of long-rangespectively. In Sec. VI, we conclude.

translational order and stability to shear, glassksplay two
phenomena that distinguish them from other states of matter.
First, glassegand disordered solids, in generakhibit ther- 1l BACKGROUND

modynamic and transport properties at very low tempera-  a; very low temperatures, glasses and amorphous solids
tures that are markedly different than that of correspondingypit 4 variety of behaviors that can be said to be anoma-
crystals of the same materfaly indicating a much richer 1ous. For example, the heat capacity of an amorphous mate-
dynamics at low frequency. The second phenomena is thg,| pelow abot 1 K is much greater than the corresponding
glass transition !tself, defmed as the tempgrafprenarrow crystal and has a nearly linear temperature dependeince,
temperature regiorat which a supercooled liquid undergoes ¢ rast to the well-knowi® dependence predicted by the
kinetic arr_est and is no _Ionger able_ to reach equilibrium, an ebye model for crystals. Also the thermal conductivity is
char_acterl_zed by a rapid change in slope of the thermodyquadratic inT (as opposed ta2 for crystals at very low
namic variables such as entropy and molar volume and by @ nheratures. This anomalous behavior can be well ex-
divergence of the viscosityThe ability to make orders of ained by assuming that the excitations that dominate the
magnitude changes in the viscosity with relatively small tem'density of states at low frequency are localized two-level
perature change is of vital importance to the familiar art Ofstates(tunneling modes>® At higher temperatureoetween
gla§s blowing). Despite recent progress, this transition re-1 504 20 K, this two-level statéTLS) model breaks down,
mains an enigma. . . . . failing to explain the observed plateau region of the thermal
At present no comprehensive microscopic theory existgnquctivity?? in amorphous systems at about 10 K as well
that can describe the behavior of glasses over their entirgs onounced nonlinearities in the heat capacity abové 1 K.
temperature range. It is relatively well established now thaExperimentég and computer simulatio®&1° show that. in

the low temperature anomalous behavior of amorphous sy$ig region, low-frequency localized harmonic modes be-
tems is due to the presence of disorder-induced localized, e important.

excitations that coexist with and dominate the sound waves There is some indication that the localized vibrational

at low frequencies-’ The question then arises as to whether,odes and the TLS have a common structural otigitand
such localization also plays a role at higher temperatures. 19, associated with “defects” in the glass. A theory exploit-
this paper, we use the technique of instantaneous normerg this connection has been proposed by Karpbal®® in
mode (INM) gnaly5|s on two model systems to explore the, hich the localized tunneling states and quasilocalizeso-
extenf[ to which the concept of localization can be used t(hani) low-frequency harmonic vibrational modes are de-
describe such systems at temperatures up to and above t8g&ipeq by soft anharmoniguartio potentials for some ef-

glass transition temperature. fective reaction coordinate. A fit using this model to experi-
mental results on a variety of glasses yields values between
dAuthor to whom correspondence should be addressed. 20 and 70 for the number of atoms participating in a typical
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localized vibration'! Recent experiments also show a corre-from the trajectory at some timé,. As in standard normal
lation between the nature of the glass transition and the relanode analysis the total potential is expanded in a Taylor
tive concentration of TLS and the quasilocalized harmonicseries abouR,, to yield
modest*1°

_ When a liquid is coolgd beyond its equilibrium fre_ezmg ®(R)=P(Ry)—F-(R—Rg)+ 3 (R—Ry)-K-(R—Ryp)
point, there are two possible events that can occur. First, the
liguid can crystallize. Second, if the cooling rate is fast +oe 1)
enough that nucleation to the crystal does not occur, then at a
certain temperature the supercooled liquid will undergo avhere the Bl-dimensional force vectoF, and the 3 X 3N
transition to a glass. It is the existence of such a transitiomlynamical matrixK are given by
that differentiates a glass from other amorphous solids. The

glass transition is characterized by a dramatic increase in the dP(R)
viscosity and a sharp, but not discontinuous, change in slope  (Flia==""1 (2
of the extensive thermodynamic variables suchSa¢,E ' TR=Ry
(which remain continuous through the transitioh
The glass transition differs from a true thermodynamicand
transition in that the transition temperaturg is not fixed,
but is a function of the cooling rate. This implies that the K _ I*®(R) 3
glass transition is primarily kinetic in origin—af,; most ( )i“'Jﬁ’_aRia(ijﬁ R:RO'

relaxation processes are frozen out and the more stable crys-

tal phase becomes kinetically inaccessible. However, the fact

that experimentally there appears to be a definite IoweFeSpeCtlvely’ where and] are atomic indices and and 5

bound for T, independent of the quench rate leads to thedenote one of the Cartesian coordinates. Since the configu-

speculation that there is an underlying thermodynamics tranr—atlon is chosen from the trajectory of a system at nonzerg

sition driving (or accompanyingthe kinetic transition—this temperature.’ .'t will'in all probab|_I|ty not represent a global
. . : (or loca) minimum of the potential energy surface. There-
's currently a major open guestion. fore, unlike the case of standard normal mode analysis, the
Evidence from recent computer simulations on mOdelorcc’e vector cannot be assumed to vanish and the dynar,nical
glasse¥*®has also been used to support recent speculatiok - ) o - y .
n[:atrlx is not necessarily positive definite. However, as in

of the existence, in some glasses, of a dynamical transition a . X o
g y andard normal-mode analysis, diagonalization of the dy-

a temperature[, abovethe glass transition temperature, ?lamical matrix to yield the instantaneous normal modes
where there is a change in the primary mechanism of diffu- Y

sion for supercooled liquids from continuous flow to local- (elgenvegg(:r)sg\fntc:] thlc-’.\\”(\:/lorr_ese?]or;(ljll)ng_ II;IMafrdeeunep?(é)theof
ized hopping. It has been argdédhat this transition repre- sguare roots € clgenvalyegives scription

sents a change from a dynamical response typical of quuidghe potential energy surface and short-time dynamics based

to one typical of glasses, and that as such, would be a mort ne 'gdﬁgﬁ]?gaelnr;;:ﬁgoclr?lgggnct:]e ;gmeeg;?r\‘/ifgt%i S(;ggﬁ
fundamental divide than the usually defined glass transitio y P ' P

In the extended mode-coupling thedAsuch a transition has n_bility_exists to find_ negative eigenvalues whi.c.h regult in
been linked with the observed cross-over temperature in sgnaginary frequencies as yvell as .the usual positive g|genval-
called “fragile”?! glasses, where the temperature depen-u.es’(posr['ve real frequencigsin this respegt, the conflggra-
dence of the viscosity changes from non-Arrhenius t0t|on_ally averag_ed INM spectra can be viewed as giving a
Arrhenius form, but the microscopic mechanism remains un§tat'5t'cally welght_ed representation of the (_:urvature of the
clear. many-body potential energy surface. For a given temperature

As mentioned earlier, the anomalous behavior of disor—and density, the normalized INM density of stafB0OS) is

dered solids at low temperatures can be well explained ilgeflned as

terms of the existence of localized excitations. It is then natu- 3N

ral to inquire into the role that such localization plays at @(w)5<_ D 5(w_w_)>
higher temperatures near the glass transition—it is this ques- 3N =1 v
tion that motivates the present work.

4

where the(---) represent a configurational average.
The INM DOS has been shown to give a good descrip-

tion of the short time dynamics as evidenced by calculations
I1l. INSTANTANEOUS NORMAL MODES on the velocity correlation functiofVCF).2#=2° A major

question that has been the motivation for much of the work

Instantaneous normal modésiM)?>~2*have become a on INM's for supercooled liquids is the degree to which the

useful tool in liquid dynamics and are defined in analogy toINM spectra contains information about the long-time dy-
the more familiar normal modes. For &hparticle system at namics(diffusion) as well. This would seem to be a futile
a given temperatur& one chooses a configuratigdefined task, given the fact that a direct calculation of the VCF from
by a 3N-dimensional vector of atomic coordinateR,.)  the INM spectra diverges quite dramatically at intermediate
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times. However, it has been shown that the frequency molV. RESULTS FOR THE INVERSE-SIXTH-POWER
ments of the INM DOS can be used to calculate the ettact SYSTEM
andt* coefficients in the time series expansion of the VCF For comparison to earlier work on the localization of
and that, given a reasonable ansatz for the functional form of P 97 .
- . .normal modes aff=0"" and our previous work on INM
the VCF, knowledge of these two coefficients alone is suffi- o O : .
localization;™ we will first discuss the results obtained for an

cient to obtain a reasonable value for the diffusion constant . ; .
o 0 inverse sixth-power repulsive potential
in simple systemg

In previous applications of INM analysis to supercooled a\®
liquids 2% the imaginary frequency modes were interpreted V(") = 6(‘)
as representing motion over a barrier and were thus termed to

be “unstable” modes. Similarly the real frequency modeslIn order to ensure that the potential vanishes smoothly at the
were associated with motion in a potential well and werechosen cutoff distance af.=3.0s, the actual potential used
said to represent “stable” modes. Using a picture due td©" the2 simulations was modified by the addition of
Goldsteit* and zZwanzig? in which the liquid dynamics A(r/0)°+B, where the parameter& and B were deter-
consists of vibration about some equilibrium positistable mlned by requiring that both the potential and its first deriva-
mode$ with periodic jumps over barrierainstable modés tive are zero at=r.] IQ what folli)ws tge s'iandard reduced
to new equilibrium positions, a variety of workers2>27-33 u*nlts will zthl? used:r*=r/o, p*=po”, T"=kTle, and
have, with some quantitative success, developed theorids = (¢/Ma”) i

showing the close relationship of the diffusion constant of a 1 N€ liquid and glass configurations were generated using
fluid to the fraction of unstable INM modes, , which can molecular-dynamics (MD) simulations. Except where oth-
be easily calculated from the INM DOS. erwise indicated, the system consisted of 500 particles held

As we showed in our previous papérthis view of su- at constant temperature with a reduced density of 1.0 and a

percooled liquid dynamics, although useful, is somewhat in-reduced timg step of 0.02. For the liquid systems .a'lbove the
complete. First, not all of the imaginary frequency modesglass tran§|t|on temperaturg,, the syst.em was equmbrategl
can be properly called “unstable,” since not all correspondat the desired temperature for 2000 time steps and configu-

to the system being near the top of a barrier, but are assocligtions separated by 100 time steps were then extracted for

ated with the anharmonic shoulder of an otherwise singlelN'\/I analysis. For this reduced density, we estlmateTge

well potential. As predicted by Key¥sand demonstrated in for this system to be between 0.05 and 0.08. This is lower

the present work and Ref. 34 there is a cutoff imaginarythan the estlmqte given in our previous péﬁarnd is based
on a more detailed analysis of the diffusion constants as cal-

frequency below which all imaginary frequency modes are .
stable. Second, the close relationship of the diffusion conf:mateOI from mean-squared dlsplacem_ent (_Jlata g_enera_ted at
stant to the fraction of unstable modes must break down a ach temperat_ure Py molecular-dynamics simulation. Figure
the glass transition is approached since theis nonzero shows the diffusion constant for a range 9f reduged tem-
eratures between 0.09 and 0.3 as well as fits of this data to

even in the glassy region where the diffusion constant i : i
effectively zero. From this, one can infer that not all unstable "2 functional forms that have been used to model such data:
he Vogel-Fulche(VF) form

modes are associated with diffusion pathways. In the nextt
section, we will present evidence that shows that the degree D=AT exd —B/(T—Ty)], )
to which a given unstable mode can participate in diffusional L ) ,
motion is intimately related to the spatial extent of the@nd @ powgr-law form which is motivated by mode-coupling
mode—that is, whether it is localized or extended. predictions

The spatial distribution of a given INM is quantified in D=C(T—To“ (8)
terms of the normalized eigenvectors;, of each INM, ) o
wherej runs over theN particles in the sample andlabels ~The VF law is best fit withA=0.170, B=0.1387, and
the modes. The fraction of the kinetic energy of magle 10=0-048. The power law fit giveB=0.237,«=1.38, and
located on a given atorjiis then given by(e-e®). A stan- T.=0.078. The VF form is a better overall fit based on e

dard measure of localization of mode is the participation raValué, but both are quite good. If we take the valued pf
tio and T, calculated in this manner to give lower and upper

bounds forT, we arrive at the range given above.
The glass configurationdelow and neaf ;) were cre-

ated by quenching an equilibrated liquid to the desired tem-
) perature followed by an equilibrium run of 2000 steps. Once

equilibrated, configurations separated by 100 time steps were

used for data analysis. To ensure that the configuration space
For extended modep is of order unity. For localized or was adequately sampled, the quenching process was repeated
quasilocalized modes, it will scale inversely with the systemafter every five sampled configurations. The potential energy
size. Recently, the participation ratio has been used in a studgnd radial distribution function were carefully monitored and
of localization of INM’s in liquid watet® in which all imagi-  those samples found to have undergone crystallization were
nary frequency modes were reported to be delocalized. = removed from the data set. On the average, 80 configurations

(6)

-1

N
paE[NZl (€,-€,)?
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FIG. 1. The average INM density of states as a function of frequency af|G. 3. The average participation ratja(v), as a function of frequency for
several temperatures for the inverse sixth-power repulsive potential. Fdihe same temperatures as shown previously for the inverse sixth DOS. Once

display purposes, the imaginary frequencies are shown as negative freque®dain, the imaginary frequencies are shown as negative frequencies.

cies.

were used for each temperature, to obtain the results shownary frequencies increases with increasing temperature.
Figure 1 shows the average INM DOS as a function of fre-Aside from this, no distinct change occurs that seems to sig-
guency for several temperaturék.should be noted that the nal thatTg has been crossed. Since this indicates that the
bimodal appearance is an artifact of the Jacobian factor usdaction of imaginary frequency modes does not vanish even
in the transformation of the eigenvalues to frequentigds  well within the glass phase, the postulated relationship be-
expected, the number of and average magnitude for imagfween these modes and the diffusion constant must break
down at low temperatures.
As mentioned in the previous section, it has been shown

oty ' ' ' ' ' ! that not all imaginary frequencies represent unstable
modes** The imaginary frequency could simply be a conse-
quence of an inflection point at the side of an otherwise
single-well region of the potential surface. Motion along
such modes would not lead to a change in equilibrium posi-
tion (and, therefore, could not contribute to diffusjoand
should, like the real frequency modes be classified as stable.
Further, the imaginary frequency may represent a mode that
is localized; consequently, any barrier crossed in this con-
figuration space direction would not lead to continuous flow
but, instead, represents local rearrangement, which could still
lead to diffusion, but only by a local hopping mechanism. We
then divide the imaginary frequency modes in to three rel-
evant categories: stable modes, unstable localized modes,

D*

0.001 |-

Simulation Fo—i 1
Vogel-Fulcher —— and unstable extended modes. Thus the role of localization is

Power Law -~ 4 X X | . X X
. very important in understanding the diffusive processes in
T the supercooled liquid which in turn are significant in under-
! s ! i standing the approach to the glass transition.

j
i
i
i
f
T

o

1
0 0.05

T 2~1 .15 0.2  0.25 0.3 0.35 Localization can be quantified using the participation ra-
1; T tio defined in Eq.5). Figure 3 shows the configurationally
averaged INM participation ratiqy(v), as a function ofy,

FIG. 2. Diffusion constant for the inverse sixth power fluid as a function of evaluated at the same set of temperatures as for the DOS.
reduced temperature at constant dengity=1.0). The diamonds show the One sees a drop in the participation ratio in the tails of the
results from molecular dynamics simulatiomith 20 error barg. The solid . L . S .

and dotted lines are fits to a Vogel—Fulcher lavexd —B/(T* —T,)] and eigenvalue dIS}tI’IbUtIOﬂ, |nd|.cat|ng that. the mOdeS I.n those
to a power lawA(T* — T¥), respectively. For reference, the fit®§ and  frequency regions are localized. This is typical of disorder-
T* are indicated, as well as the melting temperafTe induced localization.

0.0001
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0.3t % -
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02 | 3 -
*
041} 32 4 FIG. 5. Potential profilefof E,(\) vs (\)] generated from MD simulations
3 on the inverse sixth systefat a temperature of 0.08(a) A localized un-
O3 stable modep(r)=0.184;iv=-0.269. (b) A stable imaginary frequency
JE $ mode; p(v)=0.425; iv=-0.136. (c) An extended stable real frequency
0.0 A i !

_ o S ' where ® is the total potentialR, is the IN-dimensional
FIG. 4. The size dependence of the participation ljétt)oth_e inverse S|xth configuration vectore, is the eigenvector for mode and\
s system), p(»), is shown for a temperature of 0.08 in the imaginary regime. . . . .
The system sizes includdt=128 (diamond$, 500 (crossey 864 (squareks is a parameter that V_ar'es QVer a predefined r'_ange an_d 1S _used
1024 (X’s), and 1458(stars. The error bars are a magnitude less than or t0 advance the configuration of the system in the direction
equal to the size of the symbols, and have therefore been omitted for clarityindicated by the eigenvector. Obviously)ifis too large, the
system is too far away from the initial configuration and the
INM mode picture is not reliable. However, we only need a
In order for us to classify the modes as extended oVery local picture to determine the stability of a mode. In
localized, we need to establish the critical value of the parFigs. 3a), 5(b), and Jc) are three different potential profiles
ticipation ratio,p,, below which a mode can be considered (for a temperature of 0.8vhich are typical for all tempera-
to be localized. This requires an analysis of the system siztires neaif; and represent an unstable mode, a stable imagi-
dependence of the participation ratio. Truly localized modeg1@ry frequency mode, and a stable real frequency mode, re-
will scale inversely with system size, whereas, extendedpPectively. _
modes would show little, if any, size dependence. We can use Once the profiles for all modes have been generated and
this property to determine the value pf. For T*=0.08 analyzed, it is possible to calculate separate densities of
(which is our upper bound for the glass transition temperastates for all types of modes. Figure 6 shows the unstable
ture), Fig. 4 shows the participation ratio for 5 system sizes:
N=128, 500, 864, 1024, and 1458. In this figure, we see that

the participation ratio begins to become size dependent at a 0.4 — . T
critical participation ratio of aboup.~0.40 for a 500 par- OT=007
ticle system. It should be pointed out that for localized *T=0.08
modes the participation ratio should be ideally a monotoni- ©T=012

i . . : o AT=0.15 j
cally decreasing function of system size. While this is true . 03 roo025 N
for the lowest values afy in Fig. 4, it is not true at some of N *x o
the higheri v values where there is still significant size de- ‘ X Ax
pendence op. For example, atr~0.28 we see thail=128 D(v) A D
is out of order. The reason for this is that tN&* scaling for 02+ x A oog i
localized modes is only valid when the system is much larger % A ©
than the typical spatial extent of the localized modes at that ©

.. . x Ao % &
frequency, thus, these results indicate that the size of the o4 b 8e |
atomic clusters that make up the localized modes increases ' y A O *O %
as one moves toward the center of the band. A more accurate A
determination of localized-to-extended crossover frequency y X o *° &
(the “mobility edge”) would require further analysis using 0.0 XXX A ADABOO o BO
Determination of the stability of imaginary frequency v
mode requires examining the energy profiles of each INM
(|abe|eda) FIG. 6. The inverse sixth unstable-mode density of states for a variety of
temperatures. As expected, we see that the number of unstable modes in-
E.(\)=D(Ry+re,), (9 creases as the temperature increases.
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FIG. 7. The inverse sixth density of stat@t a temperature of 0.2@or the
imaginary frequencies and the corresponding unstable modes. As expected,
the unstable mode density of states is of lesser area than that of the imagi-
nary frequencies for a given temperature.

FIG. 9. Same as previous figure except witl{»)=0.375

plot is that below a reduced temperature just above 0.08 the
mode DOS at various temperatures. Figure 7 shows the DOBgction of extended unstable modes becomes zero and all
for the imaginary frequencies and the corresponding unstablénstable modes are labeled as localized. Figure 9 shows the
mode DOS forT*=0.20. Using this energy profile data and Same plot withp.=0.375—here, the qualitative behavior is
a threshold ofp.=0.40 as a criterion for determining the same with a slightly lower value for the critical tempera-
whether a given mode is localized, along with our profileture below which all unstable modes become localized. This
data, we obtain the results shown in Fig. 8, where we showWrovides an explanation for the observation that that below
the fraction of the various mode typémaginary frequency, Tg there is no dlfjfUSIOH even though the O-V-era” fraction of
unstable |Oca|ized, and unstable exter')qﬁdtted as a func- unstable modes is nonzero. Below the critical temperature,
tion of reduced temperature. The most notable feature of thigiffusion could only proceed via a series of localized hops.
When extended localized modes appear at higher tempera-
tures then a continuous flow mechanism for diffusion would

0150 T LIRS RS | T T T T T T T T YTy be pOSSIble'
0.140 | O Imaginary o ] The dependence of the INM DOS on temperature and
0.130 | O Unstable Modes i frequency contains information as to the distribution of bar-
0420 © © Extended Unstable Modes 1 rier heights in the many-body potential surfa¢®nergy
0110 | * Localized Unstable Modes o o ] landscapeJ. In a recent paper, Keyes has examined the
0'100 i 1 functional form of the imaginary frequency branch of the
) o © O 1 INM density of states. For a Lennard-Jones system with
g'gzg - I po-=1.0 this part of the DOS was found to be well fit by

/ 0.070 |- o~ o * : |o|)=20A exp(—Bw*/T?), (10)
0.060 |- S N * ] whereA andB were found to be nearly constant. This form
0.050 OO R o corresponds to a Gaussian distribution for the negative ei-
0.040 | o Di** genvalues of the dynamical matrix. Vijayadamodar and
0.030 | o” g¥ o © Nitzar®® have examined data for an LJ fluid at a lower den-
0.020 - oO qﬁ < sity and found that this data was better fit by

® o

0.010 | o o° & - _ B2
0000 L 1 M A\OOO? 1 1 1 1 1 1 1 1 1 J(|w|) 2wA eXF( Bw /T). (11)
©70.00 0.24 028

0.04 008 012 0.16 0.2
T

We have analyzed our distributions for the inverse sixth-
power potential at a variety of temperatures at fixed density
and found that the low temperature data negand T, was

FIG. 8. Fraction of modefp.(»)=0.40], for temperatures simulated on the best fit by Eq.(10) while at higher temperatures well into the
inverse sixth system. Shown are the fractiérfer the imaginary frequency )

modes, all unstable modes, extended unstable modes, and finally the Iocéiqu.id phase the_ \ﬁj?yadamOdar forfEq. (11)] was better.
ized unstable modes. To illustrate this in Fig. 10 we pldt=In[ Z|w|/(2|w|)] vs both
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FIG. 11. Average unstable mode barrier hei¢gtarg for the supercooled
inverse sixth power fluid at a temperature Bf=0.12 as a function of
imaginary frequency. The circles show the average distance of the central
configuration point from the top of the barridor this data the error bars are

FIG. 10. IHZ(|w|)/(2|w])] for the inverse sixth power potential at two tem- smaller than the size of the symbols and are omijtted

peraturegT*=0.2 and 1.0 plotted vsw? and w®.

energy at the top of the barrier. Since higher barriers must

o’ and »* for both T*=0.2 andT*=1.0. At the lower tem-  exist, this observation implies that the INM procedure is
perature which is slightly above the melting temperatuie, “fragile” in the sense that a barrier is detected only when the
linear in w* (Keyes form whereas at the higher temperature system is near the top—i.e., the averaged INM spectra con-
| is linear in ? (Vijayadamodar form This is consistent tains only those barriers which can be easily crossed at a
with the previous results since the Vijayadamodar data wagiven temperature. This result implies that, for the unstable
also deeper into the liquid part of the phase diagram than wamodes, the INM DOS gives a relatively good estimate of the
the data of Keyes. This implies that the underlying potentiadistribution of barrier-top curvature—a fact that should
barrier distribution is qualitatively different at low tempera- prove useful in using INM spectra to calculate transport
tures (high densities near the glass and melting transitions properties.
than that at high temperaturésr low densities One could
speculate that this difference is due to the fact that the disy RESULTS FOR A LENNARD-JONES SYSTEM
tributions at low temperatures are dominated by local barri-
ers which might be expected to have a different distribution ~ To make contact with the recent results of Kejese
than the extended barriers that dominate the high temper&lso collected data for a Lennard-Jones system
ture spectrum. In fact, we have sholwthat the Keyes form o\ 12 [ o\6
is obtained when one calculates the INM density of states (— —(—
using the potential distribution postulated in the soft poten- ' '
tial model of Karpovet al,'***for the low-frequency exci- and will briefly summarize them here. The potential was
tations in amorphous systems. Certainly more work needs tshifted in the same manner as for the inverse sixth-power
be done to more closely examine this question. system using a cutoff af,=2.50. The same techniques that

One of the most important quantities in the estimation ofwere used to obtain the previously discussed data were
barrier crossing rates is the curvature at the top of the barriemmplemented here as well.
It is important to ask whether INM spectra can yield any At a reduced density of 1.0, the glass transition was es-
information about this important quantity. In our analysis oftimated by Keye® to be at a reduced temperature of about
the unstable modes and their energy profiles, it was seen th@t33-0.35. Figures 12 and 13 show the DOS and participa-
for the vast majority of modes, the system was extremelytion ratio, respectively, for several temperatures on either
close (measured relative to the barrier heighd the top of side of the transition—it was not possible to get data very
the barrier shown by the profile for that mode. This is illus-close to the transition due to the high probability of crystal-
trated in Fig. 11 which shows the average unstable-modézation. Here, we see the same trends as before. Figure 14
barrier height as a function of imaginary frequency for theshows the unstable mode DOS for several temperatures
inverse-sixth power system &t =0.12 plotted together with while Fig. 15 plots the unstable modes DOS, along with
the average difference between the system energy and tlimaginary mode DOS, for a temperature of 0.50. Figures 16

v(r)=4e (12)
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FIG. 12. The average INM density of states as a function of frequency a[IG. 14. The Lennard-Jones unstable-mode density of states for a variety of
several temperatures for the Lennard-Jones potential. Once again, for di emperatures.
play purposes, the imaginary frequencies are shown as negative frequencies.

VI. CONCLUSION

In this work we have obtained two results concerning the

and 17 show the fraction of the various mode types usin&tructure of the _traj_ectory-weighted potential energy surface
p.=0.40 and 0.375, respectively. Here, we assume that thgf supercooled _I|qU|ds and glass_es as represented through the
appropriateN=500 participation ratio for onset of localiza- INM spectra. First, not all imaginary frequency modes can
tion is the same as for the inverse-sixth-power systempe termed to be unstable anq areinot associated with barriers.
Again, we see that below abo@t=0.35-0.4, all unstable Second,_ once these stable imaginary freguency modes have
modes become localized. This is consistent with the valu®@een eliminated from the spectrum leaving only true “un-
obtained forT,, from extrapolation of diffusion data, by stable” modes which are assqqlated with parrler crossing, the
Keyes® for a Lennard-Jones system wigi=1.0. unstable modes can be classified as localized or extended. As
is usual in localization studies of random materials localiza-
tion is confined to the edges of the DOS. The boundary be-
tween localized and extended regions of the spectra is called

0.6
0.100 T T T T T
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* Unstable Modes
*
0.075 * b
0.4 | fod <
*
*x O
P(v) o3|
D(v) qos0 | <o -
*
0.2 o
*
0.025 |- & 1
01
*
3‘6 <&
-3.0 0.000 . | R %99 L : EAN
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

v
FIG. 13. The average participation ratfmv), as a function of frequency for

the same temperatures as shown previously for the Lennard-Jones DOBIG. 15. The Lennard-Jones INM density of staisisa temperature of 0.50
Once again, the imaginary frequencies are shown as negative frequenciegor the imaginary frequency modes and the corresponding unstable modes.
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In order to further examine the validity of this hypoth-
esis, much more work needs to be done. First, systems of
larger size should be investigated in order to get more accu-
rate results for the “mobility edge” frequency separating lo-
calized and extended modes. Second, the relationship, if any,
between the present results and the predictions of mode-
coupling theory® needs to be explored since both are specu-
lated to describe the origin of the crossover temperature in
“fragile” glasses. Also, the INM analysis should be repeated
for systems that do not display fragile behavior; i.e., strong
glass formers such as Sidf the localization transition dis-
cussed here is indeed the origin of the crossover temperature
in fragile glasses, then the results of an analysis of the un-
stable modes for strong glass formers should give qualita-
tively different results than those presented here. Such stud-
ies are currently underway.
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