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The role of localization in glasses and supercooled liquids
Scott D. Bembenek and Brian B. Lairda)
Department of Chemistry, University of Kansas, Lawrence, Kansas 66045

~Received 26 October 1995; accepted 29 December 1995!

Localized excitations~tunneling modes, soft harmonic vibrations! are believed to play a dominant
role in the thermodynamics and transport properties of glasses at low temperature. Using
instantaneous normal-mode~INM ! analysis, we explore the role that such localization plays
in determining the behavior of such systems in the vicinity of the glass transition. Building on
our previous study@Phys. Rev. Lett.74, 936 ~1995!# we present evidence that the glass transition
in two simple model systems is associated with a transition temperature below which all un-
stable INM’s become localized. This localization transition is a possible mechanism for the
change in diffusion mechanism from continuous flow to localized hopping that is believed
to occur in fragile glass formers at a temperature just aboveTg. © 1996 American Institute of
Physics.@S0021-9606~96!50513-3#
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I. INTRODUCTION

Glasses and amorphous solids are among the most
quitous and technologically useful of materials. In spite
this, however, they remain poorly understood, especially
comparison to what is currently known about the thermod
namically stable condensed phases of matter: liquids
crystals. In addition to the simultaneous lack of long-ran
translational order and stability to shear, glasses1 display two
phenomena that distinguish them from other states of ma
First, glasses~and disordered solids, in general! exhibit ther-
modynamic and transport properties at very low tempe
tures that are markedly different than that of correspond
crystals of the same material,2–4 indicating a much richer
dynamics at low frequency. The second phenomena is
glass transition itself, defined as the temperature~or narrow
temperature region! at which a supercooled liquid undergoe
kinetic arrest and is no longer able to reach equilibrium, a
characterized by a rapid change in slope of the thermo
namic variables such as entropy and molar volume and b
divergence of the viscosity.~The ability to make orders of
magnitude changes in the viscosity with relatively small te
perature change is of vital importance to the familiar art
glass blowing.! Despite recent progress, this transition r
mains an enigma.

At present no comprehensive microscopic theory exi
that can describe the behavior of glasses over their en
temperature range. It is relatively well established now th
the low temperature anomalous behavior of amorphous s
tems is due to the presence of disorder-induced locali
excitations that coexist with and dominate the sound wa
at low frequencies.5–7 The question then arises as to wheth
such localization also plays a role at higher temperatures
this paper, we use the technique of instantaneous nor
mode~INM ! analysis on two model systems to explore th
extent to which the concept of localization can be used
describe such systems at temperatures up to and above
glass transition temperature.

a!Author to whom correspondence should be addressed.
J. Chem. Phys. 104 (13), 1 April 1996 0021-9606/96/104(13)/51
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The paper is organized as follows: In Sec. II, we briefly
review the properties of glasses, with particular attention to
the low-temperature anomalies and to the behavior near th
glass transition. An introduction to instantaneous normal
modes is given is Sec. III. Results for two model systems
interacting with an inverse-sixth power repulsion and the
Lennard-Jones potential are presented in Sec. IV and V, re
spectively. In Sec. VI, we conclude.

II. BACKGROUND

At very low temperatures, glasses and amorphous solid
exhibit a variety of behaviors that can be said to be anoma
lous. For example, the heat capacity of an amorphous mate
rial below about 1 K is much greater than the corresponding
crystal and has a nearly linear temperature dependence,2 in
contrast to the well-knownT3 dependence predicted by the
Debye model for crystals. Also the thermal conductivity is
quadratic inT ~as opposed toT3 for crystals! at very low
temperatures. This anomalous behavior can be well ex
plained by assuming that the excitations that dominate the
density of states at low frequency are localized two-level
states~tunneling modes!.5,6 At higher temperatures~between
1 and 20 K!, this two-level state~TLS! model breaks down,
failing to explain the observed plateau region of the thermal
conductivity2,3 in amorphous systems at about 10 K as well
as pronounced nonlinearities in the heat capacity above 1 K.2

Experiments4,8 and computer simulations9,7,10 show that, in
this region, low-frequency localized harmonic modes be-
come important.

There is some indication that the localized vibrational
modes and the TLS have a common structural origin11,12and
are associated with ‘‘defects’’ in the glass. A theory exploit-
ing this connection has been proposed by Karpovet al.13 in
which the localized tunneling states and quasilocalized~reso-
nant! low-frequency harmonic vibrational modes are de-
scribed by soft anharmonic~quartic! potentials for some ef-
fective reaction coordinate. A fit using this model to experi-
mental results on a variety of glasses yields values betwee
20 and 70 for the number of atoms participating in a typical
519999/10/$10.00 © 1996 American Institute of Physics
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 Th
localized vibration.11 Recent experiments also show a corre
lation between the nature of the glass transition and the re
tive concentration of TLS and the quasilocalized harmon
modes.14,15

When a liquid is cooled beyond its equilibrium freezin
point, there are two possible events that can occur. First,
liquid can crystallize. Second, if the cooling rate is fa
enough that nucleation to the crystal does not occur, then a
certain temperature the supercooled liquid will undergo
transition to a glass. It is the existence of such a transiti
that differentiates a glass from other amorphous solids. T
glass transition is characterized by a dramatic increase in
viscosity and a sharp, but not discontinuous, change in slo
of the extensive thermodynamic variables such asS,V,E
~which remain continuous through the transition!.16

The glass transition differs from a true thermodynam
transition in that the transition temperatureTg is not fixed,
but is a function of the cooling rate. This implies that th
glass transition is primarily kinetic in origin—atTg most
relaxation processes are frozen out and the more stable c
tal phase becomes kinetically inaccessible. However, the f
that experimentally there appears to be a definite low
bound forTg independent of the quench rate leads to th
speculation that there is an underlying thermodynamics tra
sition driving ~or accompanying! the kinetic transition—this
is currently a major open question.

Evidence from recent computer simulations on mod
glasses17,18 has also been used to support recent speculat
of the existence, in some glasses, of a dynamical transition
a temperature,Tc , above the glass transition temperature
where there is a change in the primary mechanism of diff
sion for supercooled liquids from continuous flow to loca
ized hopping. It has been argued19 that this transition repre-
sents a change from a dynamical response typical of liqu
to one typical of glasses, and that as such, would be a m
fundamental divide than the usually defined glass transitio
In the extended mode-coupling theory,20 such a transition has
been linked with the observed cross-over temperature in
called ‘‘fragile’’ 21 glasses, where the temperature depe
dence of the viscosity changes from non-Arrhenius
Arrhenius form, but the microscopic mechanism remains u
clear.

As mentioned earlier, the anomalous behavior of diso
dered solids at low temperatures can be well explained
terms of the existence of localized excitations. It is then na
ral to inquire into the role that such localization plays a
higher temperatures near the glass transition—it is this qu
tion that motivates the present work.

III. INSTANTANEOUS NORMAL MODES

Instantaneous normal modes~INM !22–24 have become a
useful tool in liquid dynamics and are defined in analogy
the more familiar normal modes. For anN-particle system at
a given temperatureT one chooses a configuration~defined
by a 3N-dimensional vector of atomic coordinates,R0.!
J. Chem. Phys., Vol. 104
is article is copyrighted as indicated in the article. Reuse of AIP content is sub
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from the trajectory at some time,t0. As in standard normal
mode analysis the total potential is expanded in a Taylor
series aboutR0 to yield

F~R!5F~R0!2F–~R2R0!1 1
2 ~R2R0!–K–~R2R0!

1••• , ~1!

where the 3N-dimensional force vector,F, and the 3N33N
dynamical matrix,K are given by

~F! ia[2
]F~R!

]Ria
U
R5R0

~2!

and

~K ! ia, jb[
]2F~R!

]Ria]Rjb
U
R5R0

, ~3!

respectively, wherei and j are atomic indices anda andb
denote one of the Cartesian coordinates. Since the configu-
ration is chosen from the trajectory of a system at nonzero
temperature, it will in all probability not represent a global
~or local! minimum of the potential energy surface. There-
fore, unlike the case of standard normal mode analysis, the
force vector cannot be assumed to vanish and the dynamical
matrix is not necessarily positive definite. However, as in
standard normal-mode analysis, diagonalization of the dy-
namical matrix to yield the instantaneous normal modes
~eigenvectors! and the corresponding INM frequencies~the
square roots of the INM eigenvalues! gives a description of
the potential energy surface and short-time dynamics based
on independent motion along the INM eigenvectors. Since
the dynamical matrix can be nonpositive definite, the possi-
bility exists to find negative eigenvalues which result in
imaginary frequencies as well as the usual positive eigenval-
ues~positive real frequencies!. In this respect, the configura-
tionally averaged INM spectra can be viewed as giving a
statistically weighted representation of the curvature of the
many-body potential energy surface. For a given temperature
and density, the normalized INM density of states~DOS! is
defined as

D~v![K 1

3N (
i51

3N

d~v2v i !L , ~4!

where thê •••& represent a configurational average.
The INM DOS has been shown to give a good descrip-

tion of the short time dynamics as evidenced by calculations
on the velocity correlation function~VCF!.24–29 A major
question that has been the motivation for much of the work
on INM’s for supercooled liquids is the degree to which the
INM spectra contains information about the long-time dy-
namics~diffusion! as well. This would seem to be a futile
task, given the fact that a direct calculation of the VCF from
the INM spectra diverges quite dramatically at intermediate
, No. 13, 1 April 1996
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 T
times. However, it has been shown that the frequency m
ments of the INM DOS can be used to calculate the exact2

andt4 coefficients in the time series expansion of the VCF25

and that, given a reasonable ansatz for the functional form
the VCF, knowledge of these two coefficients alone is su
cient to obtain a reasonable value for the diffusion const
in simple systems.30

In previous applications of INM analysis to supercoole
liquids,23,24 the imaginary frequency modes were interpret
as representing motion over a barrier and were thus terme
be ‘‘unstable’’ modes. Similarly the real frequency mod
were associated with motion in a potential well and we
said to represent ‘‘stable’’ modes. Using a picture due
Goldstein31 and Zwanzig32 in which the liquid dynamics
consists of vibration about some equilibrium position~stable
modes! with periodic jumps over barriers~unstable modes!
to new equilibrium positions, a variety of workers,24,25,27,33

have, with some quantitative success, developed theo
showing the close relationship of the diffusion constant o
fluid to the fraction of unstable INM modes,f u , which can
be easily calculated from the INM DOS.

As we showed in our previous paper,34 this view of su-
percooled liquid dynamics, although useful, is somewhat
complete. First, not all of the imaginary frequency mod
can be properly called ‘‘unstable,’’ since not all correspo
to the system being near the top of a barrier, but are ass
ated with the anharmonic shoulder of an otherwise sing
well potential. As predicted by Keyes35 and demonstrated in
the present work and Ref. 34 there is a cutoff imagina
frequency below which all imaginary frequency modes a
stable. Second, the close relationship of the diffusion co
stant to the fraction of unstable modes must break down
the glass transition is approached since thef u is nonzero
even in the glassy region where the diffusion constant
effectively zero. From this, one can infer that not all unstab
modes are associated with diffusion pathways. In the n
section, we will present evidence that shows that the deg
to which a given unstable mode can participate in diffusion
motion is intimately related to the spatial extent of th
mode—that is, whether it is localized or extended.

The spatial distribution of a given INM is quantified in
terms of the normalized eigenvectors,ej

a, of each INM,
where j runs over theN particles in the sample anda labels
the modes. The fraction of the kinetic energy of modea
located on a given atomj is then given by~ej

a
–ej

a!. A stan-
dard measure of localization of mode is the participation
tio

pa[FN(
i51

N

~ea
i
–ea

i !2G21

. ~5!

For extended modesp is of order unity. For localized or
quasilocalized modes, it will scale inversely with the syste
size. Recently, the participation ratio has been used in a st
of localization of INM’s in liquid water36 in which all imagi-
nary frequency modes were reported to be delocalized.
J. Chem. Phys., Vol. 104
his article is copyrighted as indicated in the article. Reuse of AIP content is sub
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IV. RESULTS FOR THE INVERSE-SIXTH-POWER
SYSTEM

For comparison to earlier work on the localization o
normal modes atT509,7 and our previous work on INM
localization,34 we will first discuss the results obtained for a
inverse sixth-power repulsive potential

v~r !5eS s

r D
6

. ~6!

@In order to ensure that the potential vanishes smoothly at
chosen cutoff distance ofr c53.0s, the actual potential used
for the simulations was modified by the addition o
A(r /s)21B, where the parametersA and B were deter-
mined by requiring that both the potential and its first deriv
tive are zero atr5r c .# In what follows the standard reduced
units will the used: r *5r /s, r*5rs3, T*5kT/e, and
t*5(e/ms2)1/2t.

The liquid and glass configurations were generated us
molecular-dynamics37 ~MD! simulations. Except where oth-
erwise indicated, the system consisted of 500 particles h
at constant temperature with a reduced density of 1.0 an
reduced time step of 0.02. For the liquid systems above
glass transition temperature,Tg , the system was equilibrated
at the desired temperature for 2000 time steps and confi
rations separated by 100 time steps were then extracted
INM analysis. For this reduced density, we estimate theTg*
for this system to be between 0.05 and 0.08. This is low
than the estimate given in our previous paper34 and is based
on a more detailed analysis of the diffusion constants as c
culated from mean-squared displacement data generate
each temperature by molecular-dynamics simulation. Figu
2 shows the diffusion constant for a range of reduced te
peratures between 0.09 and 0.3 as well as fits of this data
two functional forms that have been used to model such da
the Vogel–Fulcher~VF! form

D5AT exp@2B/~T2T0!#, ~7!

and a power-law form which is motivated by mode-couplin
predictions19

D5C~T2Tc!
a. ~8!

The VF law is best fit withA50.170, B50.1387, and
T050.048. The power law fit givesB50.237,a51.38, and
Tc50.078. The VF form is a better overall fit based on thex2

value, but both are quite good. If we take the values ofT0
and Tc calculated in this manner to give lower and uppe
bounds forTg we arrive at the range given above.

The glass configurations~below and nearTg! were cre-
ated by quenching an equilibrated liquid to the desired te
perature followed by an equilibrium run of 2000 steps. On
equilibrated, configurations separated by 100 time steps w
used for data analysis. To ensure that the configuration sp
was adequately sampled, the quenching process was repe
after every five sampled configurations. The potential ener
and radial distribution function were carefully monitored an
those samples found to have undergone crystallization w
removed from the data set. On the average, 80 configurati
, No. 13, 1 April 1996
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were used for each temperature, to obtain the results sh
Figure 1 shows the average INM DOS as a function of f
quency for several temperatures.~It should be noted that the
bimodal appearance is an artifact of the Jacobian factor u
in the transformation of the eigenvalues to frequencies.23! As
expected, the number of and average magnitude for im

FIG. 1. The average INM density of states as a function of frequenc
several temperatures for the inverse sixth-power repulsive potential.
display purposes, the imaginary frequencies are shown as negative fre
cies.

FIG. 2. Diffusion constant for the inverse sixth power fluid as a function
reduced temperature at constant density~r*51.0!. The diamonds show the
results from molecular dynamics simulation~with 2s error bars!. The solid
and dotted lines are fits to a Vogel–Fulcher lawA exp@2B/(T*2T0)# and
to a power lawA(T* 2 Tc* )

a, respectively. For reference, the fittedT0* and
Tc* are indicated, as well as the melting temperatureTm* .
J. Chem. Phys., Vol. 10
This article is copyrighted as indicated in the article. Reuse of AIP content is su
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nary frequencies increases with increasing temperature.
Aside from this, no distinct change occurs that seems to sig-
nal thatTg has been crossed. Since this indicates that the
fraction of imaginary frequency modes does not vanish even
well within the glass phase, the postulated relationship be-
tween these modes and the diffusion constant must break
down at low temperatures.

As mentioned in the previous section, it has been shown
that not all imaginary frequencies represent unstable
modes.34 The imaginary frequency could simply be a conse-
quence of an inflection point at the side of an otherwise
single-well region of the potential surface. Motion along
such modes would not lead to a change in equilibrium posi-
tion ~and, therefore, could not contribute to diffusion! and
should, like the real frequency modes be classified as stable
Further, the imaginary frequency may represent a mode that
is localized; consequently, any barrier crossed in this con-
figuration space direction would not lead to continuous flow
but, instead, represents local rearrangement, which could still
lead to diffusion, but only by a local hopping mechanism. We
then divide the imaginary frequency modes in to three rel-
evant categories: stable modes, unstable localized modes
and unstable extended modes. Thus the role of localization is
very important in understanding the diffusive processes in
the supercooled liquid which in turn are significant in under-
standing the approach to the glass transition.

Localization can be quantified using the participation ra-
tio defined in Eq.~5!. Figure 3 shows the configurationally
averaged INM participation ratio,p~n!, as a function ofn,
evaluated at the same set of temperatures as for the DOS
One sees a drop in the participation ratio in the tails of the
eigenvalue distribution, indicating that the modes in those
frequency regions are localized. This is typical of disorder-
induced localization.

at
For
uen-

of

FIG. 3. The average participation ratio,p~n!, as a function of frequency for
the same temperatures as shown previously for the inverse sixth DOS. Once
again, the imaginary frequencies are shown as negative frequencies.
4, No. 13, 1 April 1996
bject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

, 16 Sep 2014 19:16:33



e
e

t
s
r

y

e

r

5203S. D. Bembenek and B. B. Laird: Localization in glasses and liquids

 Th
In order for us to classify the modes as extended
localized, we need to establish the critical value of the pa
ticipation ratio,pc , below which a mode can be considere
to be localized. This requires an analysis of the system s
dependence of the participation ratio. Truly localized mod
will scale inversely with system size, whereas, extend
modes would show little, if any, size dependence. We can u
this property to determine the value ofpc . For T*50.08
~which is our upper bound for the glass transition temper
ture!, Fig. 4 shows the participation ratio for 5 system size
N5128, 500, 864, 1024, and 1458. In this figure, we see th
the participation ratio begins to become size dependent a
critical participation ratio of aboutpc'0.40 for a 500 par-
ticle system. It should be pointed out that for localize
modes the participation ratio should be ideally a monoton
cally decreasing function of system size. While this is tru
for the lowest values ofin in Fig. 4, it is not true at some of
the higherin values where there is still significant size de
pendence ofp. For example, atin'0.28 we see thatN5128
is out of order. The reason for this is that theN21 scaling for
localized modes is only valid when the system is much larg
than the typical spatial extent of the localized modes at th
frequency, thus, these results indicate that the size of
atomic clusters that make up the localized modes increa
as one moves toward the center of the band. A more accu
determination of localized-to-extended crossover frequen
~the ‘‘mobility edge’’! would require further analysis using
much larger systems.

Determination of the stability of imaginary frequenc
mode requires examining the energy profiles of each IN
~labeleda!

Ea~l![F~R01lea!, ~9!

FIG. 4. The size dependence of the participation ratio~for the inverse sixth
s system!, p~n!, is shown for a temperature of 0.08 in the imaginary regim
The system sizes include:N5128 ~diamonds!, 500~crosses!, 864~squares!,
1024 ~X’s!, and 1458~stars!. The error bars are a magnitude less than o
equal to the size of the symbols, and have therefore been omitted for cla
J. Chem. Phys., Vol. 104
is article is copyrighted as indicated in the article. Reuse of AIP content is sub
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whereF is the total potential,R0 is the 3N-dimensional
configuration vector,ea is the eigenvector for modea andl
is a parameter that varies over a predefined range and is used
to advance the configuration of the system in the direction
indicated by the eigenvector. Obviously, ifl is too large, the
system is too far away from the initial configuration and the
INM mode picture is not reliable. However, we only need a
very local picture to determine the stability of a mode. In
Figs. 5~a!, 5~b!, and 5~c! are three different potential profiles
~for a temperature of 0.08! which are typical for all tempera-
tures nearTg and represent an unstable mode, a stable imagi-
nary frequency mode, and a stable real frequency mode, re-
spectively.

Once the profiles for all modes have been generated and
analyzed, it is possible to calculate separate densities of
states for all types of modes. Figure 6 shows the unstable

.

r
ity.

FIG. 5. Potential profiles@of Ea~l! vs ~l!# generated from MD simulations
on the inverse sixth system~at a temperature of 0.08!: ~a! A localized un-
stable mode;p~n!50.184; in520.269. ~b! A stable imaginary frequency
mode; p~n!50.425; in520.136. ~c! An extended stable real frequency
mode;p~n!50.576;n50.236.

FIG. 6. The inverse sixth unstable-mode density of states for a variety of
temperatures. As expected, we see that the number of unstable modes in-
creases as the temperature increases.
, No. 13, 1 April 1996
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5204 S. D. Bembenek and B. B. Laird: Localization in glasses and liquids
mode DOS at various temperatures. Figure 7 shows the D
for the imaginary frequencies and the corresponding unsta
mode DOS forT*50.20. Using this energy profile data an
a threshold of pc50.40 as a criterion for determining
whether a given mode is localized, along with our profi
data, we obtain the results shown in Fig. 8, where we sh
the fraction of the various mode types~imaginary frequency,
unstable localized, and unstable extended! plotted as a func-
tion of reduced temperature. The most notable feature of

FIG. 7. The inverse sixth density of states~at a temperature of 0.20! for the
imaginary frequencies and the corresponding unstable modes. As expe
the unstable mode density of states is of lesser area than that of the im
nary frequencies for a given temperature.

FIG. 8. Fraction of modes@pc~n!50.40#, for temperatures simulated on the
inverse sixth system. Shown are the fractionsf for the imaginary frequency
modes, all unstable modes, extended unstable modes, and finally the l
ized unstable modes.
J. Chem. Phys., Vol. 10
 This article is copyrighted as indicated in the article. Reuse of AIP content is su
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plot is that below a reduced temperature just above 0.08 th
fraction of extended unstable modes becomes zero and
unstable modes are labeled as localized. Figure 9 shows t
same plot withpc50.375—here, the qualitative behavior is
the same with a slightly lower value for the critical tempera-
ture below which all unstable modes become localized. Thi
provides an explanation for the observation that that below
Tg there is no diffusion even though the overall fraction of
unstable modes is nonzero. Below the critical temperatur
diffusion could only proceed via a series of localized hops
When extended localized modes appear at higher temper
tures then a continuous flow mechanism for diffusion would
be possible.

The dependence of the INM DOS on temperature an
frequency contains information as to the distribution of bar
rier heights in the many-body potential surface~‘‘energy
landscape’’!. In a recent paper,35 Keyes has examined the
functional form of the imaginary frequency branch of the
INM density of states. For a Lennard-Jones system wit
rs351.0 this part of the DOS was found to be well fit by

D~ uvu!52vA exp~2Bv4/T2!, ~10!

whereA andB were found to be nearly constant. This form
corresponds to a Gaussian distribution for the negative e
genvalues of the dynamical matrix. Vijayadamodar and
Nitzan38 have examined data for an LJ fluid at a lower den
sity and found that this data was better fit by

D~ uvu!52vA exp~2Bv2/T!. ~11!

We have analyzed our distributions for the inverse sixth
power potential at a variety of temperatures at fixed densit
and found that the low temperature data nearTg andTm was
best fit by Eq.~10! while at higher temperatures well into the
liquid phase the Vijayadamodar form@Eq. ~11!# was better.
To illustrate this in Fig. 10 we plotI5ln@D uvu/~2uvu!# vs both

cted,
agi-

cal-

FIG. 9. Same as previous figure except withpc~n!50.375
4, No. 13, 1 April 1996
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5205S. D. Bembenek and B. B. Laird: Localization in glasses and liquids
v2 andv4 for bothT*50.2 andT*51.0. At the lower tem-
perature which is slightly above the melting temperature,I is
linear inv4 ~Keyes form! whereas at the higher temperatu
I is linear in v2 ~Vijayadamodar form!. This is consistent
with the previous results since the Vijayadamodar data w
also deeper into the liquid part of the phase diagram than w
the data of Keyes. This implies that the underlying potent
barrier distribution is qualitatively different at low tempera
tures ~high densities! near the glass and melting transition
than that at high temperatures~or low densities!. One could
speculate that this difference is due to the fact that the d
tributions at low temperatures are dominated by local ba
ers which might be expected to have a different distributi
than the extended barriers that dominate the high temp
ture spectrum. In fact, we have shown39 that the Keyes form
is obtained when one calculates the INM density of sta
using the potential distribution postulated in the soft pote
tial model of Karpovet al.,11,13 for the low-frequency exci-
tations in amorphous systems. Certainly more work need
be done to more closely examine this question.

One of the most important quantities in the estimation
barrier crossing rates is the curvature at the top of the bar
It is important to ask whether INM spectra can yield an
information about this important quantity. In our analysis
the unstable modes and their energy profiles, it was seen
for the vast majority of modes, the system was extrem
close~measured relative to the barrier height! to the top of
the barrier shown by the profile for that mode. This is illu
trated in Fig. 11 which shows the average unstable-mo
barrier height as a function of imaginary frequency for th
inverse-sixth power system atT*50.12 plotted together with
the average difference between the system energy and

FIG. 10. ln@D~uvu!/~2uvu!# for the inverse sixth power potential at two tem
peratures~T*50.2 and 1.0! plotted vsv2 andv4.
J. Chem. Phys., Vol. 10
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energy at the top of the barrier. Since higher barriers mus
exist, this observation implies that the INM procedure is
‘‘fragile’’ in the sense that a barrier is detected only when the
system is near the top—i.e., the averaged INM spectra con
tains only those barriers which can be easily crossed at
given temperature. This result implies that, for the unstable
modes, the INM DOS gives a relatively good estimate of the
distribution of barrier-top curvature—a fact that should
prove useful in using INM spectra to calculate transport
properties.

V. RESULTS FOR A LENNARD-JONES SYSTEM

To make contact with the recent results of Keyes,35 we
also collected data for a Lennard-Jones system

v~r !54eF S s

r D
12

2S s

r D
6G ~12!

and will briefly summarize them here. The potential was
shifted in the same manner as for the inverse sixth-powe
system using a cutoff ofr c52.5s. The same techniques that
were used to obtain the previously discussed data wer
implemented here as well.

At a reduced density of 1.0, the glass transition was es
timated by Keyes35 to be at a reduced temperature of about
0.33–0.35. Figures 12 and 13 show the DOS and participa
tion ratio, respectively, for several temperatures on eithe
side of the transition—it was not possible to get data very
close to the transition due to the high probability of crystal-
lization. Here, we see the same trends as before. Figure 1
shows the unstable mode DOS for several temperature
while Fig. 15 plots the unstable modes DOS, along with
imaginary mode DOS, for a temperature of 0.50. Figures 16

-

FIG. 11. Average unstable mode barrier height~stars! for the supercooled
inverse sixth power fluid at a temperature ofT*50.12 as a function of
imaginary frequency. The circles show the average distance of the centr
configuration point from the top of the barrier~for this data the error bars are
smaller than the size of the symbols and are omitted!.
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 Th
and 17 show the fraction of the various mode types us
pc50.40 and 0.375, respectively. Here, we assume that
appropriateN5500 participation ratio for onset of localiza
tion is the same as for the inverse-sixth-power syste
Again, we see that below aboutT50.35–0.4, all unstable
modes become localized. This is consistent with the va
obtained forTg , from extrapolation of diffusion data, by
Keyes35 for a Lennard-Jones system withr*51.0.

FIG. 12. The average INM density of states as a function of frequency
several temperatures for the Lennard-Jones potential. Once again, for
play purposes, the imaginary frequencies are shown as negative frequen

FIG. 13. The average participation ratio,p~n!, as a function of frequency for
the same temperatures as shown previously for the Lennard-Jones D
Once again, the imaginary frequencies are shown as negative frequenc
J. Chem. Phys., Vol. 10
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VI. CONCLUSION

In this work we have obtained two results concerning the
structure of the trajectory-weighted potential energy surface
of supercooled liquids and glasses as represented through th
INM spectra. First, not all imaginary frequency modes can
be termed to be unstable and are not associated with barriers
Second, once these stable imaginary frequency modes hav
been eliminated from the spectrum leaving only true ‘‘un-
stable’’ modes which are associated with barrier crossing, the
unstable modes can be classified as localized or extended. A
is usual in localization studies of random materials localiza-
tion is confined to the edges of the DOS. The boundary be-
tween localized and extended regions of the spectra is called

at
dis-
cies.

OS.
ies.

FIG. 14. The Lennard-Jones unstable-mode density of states for a variety o
temperatures.

FIG. 15. The Lennard-Jones INM density of states~at a temperature of 0.50!
for the imaginary frequency modes and the corresponding unstable modes
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 This
the mobility edge. We have shown that as the temperatur
lowered and the INM spectra shift toward real frequenci
the mobility edge crosses the boundary between stable
unstable modes. This indicates that there exists a tempera
below which all unstable modes become localized. From
analysis this temperature is closely associated with the g
transition and we speculate that it is the origin of the pr
posed change in the mechanism of diffusion in frag
glasses at a temperature slightly aboveTg .

FIG. 16. Fraction of modes withpc~n!50.40, as a function of temperature
for the Lennard-Jones system. Shown is the fractionf of imaginary fre-
quency modes, all unstable modes, extended unstable modes, and final
localized unstable modes.

FIG. 17. Same as previous figure, except withpc~n!50.375.
J. Chem. Phys., Vol. 10
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In order to further examine the validity of this hypoth-
esis, much more work needs to be done. First, systems o
larger size should be investigated in order to get more accu
rate results for the ‘‘mobility edge’’ frequency separating lo-
calized and extended modes. Second, the relationship, if an
between the present results and the predictions of mode
coupling theory19 needs to be explored since both are specu-
lated to describe the origin of the crossover temperature in
‘‘fragile’’ glasses. Also, the INM analysis should be repeated
for systems that do not display fragile behavior; i.e., strong
glass formers such as SiO2. If the localization transition dis-
cussed here is indeed the origin of the crossover temperatur
in fragile glasses, then the results of an analysis of the un
stable modes for strong glass formers should give qualita
tively different results than those presented here. Such stud
ies are currently underway.
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