8 research outputs found

    Relationship between <em>GSTM1</em> and <em>GSTT1</em> polymorphisms and schizophrenia: A case-control study in a Tunisian population

    No full text
    There is substantial evidence found in the literature that supports the fact that the presence of oxidative stress may play an important role in the pathophysiology of schizophrenia. The glutathione S-transferases (GSTs) forms one of the major detoxifying groups of enzymes responsible for eliminating products of oxidative stress. Interindividual differences observed in the metabolism of xenobiotics have been attributed to the genetic polymorphism of genes coding for enzymes involved in detoxification. Thus, in this study we investigated the association of glutathione S-transferase Mu-1 (GSTM1) and glutathione S-transferase theta-1 (GSTT1) gene deletion polymorphisms and schizophrenia in a Tunisian population. A case-control study including 138 schizophrenic patients and 123 healthy controls was enrolled. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). No association was found between the GSTM1 genotype and schizophrenia, whereas the prevalence of the GSTT1 active genotype was significantly higher in the schizophrenic patients (57.2%) than in the controls (45.5%) with (OR = 0.6, IC 0.37-0.99, p=0.039). Thus, we noted a significant association between schizophrenia and GSTT1 active genotype. Furthermore, the combination of the GSTM1 and GSTT1 null genotypes showed a non-significant trend to an increased risk of schizophrenia. The present finding indicated that GSTT1 seems to be a candidate gene for susceptibility to schizophrenia in at least Tunisian population. \ua9 2012 Elsevier B.V

    Identification of novel prostate cancer drivers using RegNetDriver: a framework for integration of genetic and epigenetic alterations with tissue-specific regulatory network

    No full text

    Genetic studies of African populations: an overview on disease susceptibility and response to vaccines and therapeutics.

    Get PDF
    Africa is the ultimate source of modern humans and as such harbors more genetic variation than any other continent. For this reason, studies of the patterns of genetic variation in African populations are crucial to understanding how genes affect phenotypic variation, including disease predisposition. In addition, the patterns of extant genetic variation in Africa are important for understanding how genetic variation affects infectious diseases that are a major problem in Africa, such as malaria, tuberculosis, schistosomiasis, and HIV/AIDS. Therefore, elucidating the role that genetic susceptibility to infectious diseases plays is critical to improving the health of people in Africa. It is also of note that recent and ongoing social and cultural changes in sub-Saharan Africa have increased the prevalence of non-communicable diseases that will also require genetic analyses to improve disease prevention and treatment. In this review we give special attention to many of the past and ongoing studies, emphasizing those in Sub-Saharan Africans that address the role of genetic variation in human disease
    corecore