1,415 research outputs found
Estimation of Primordial Spectrum with post-WMAP 3 year data
In this paper we implement an improved (error sensitive) Richardson-Lucy
deconvolution algorithm on the measured angular power spectrum from the WMAP 3
year data to determine the primordial power spectrum assuming different points
in the cosmological parameter space for a flat LCDM cosmological model. We also
present the preliminary results of the cosmological parameter estimation by
assuming a free form of the primordial spectrum, for a reasonably large volume
of the parameter space. The recovered spectrum for a considerably large number
of the points in the cosmological parameter space has a likelihood far better
than a `best fit' power law spectrum up to \Delta \chi^2_{eff} \approx -30. We
use Discrete Wavelet Transform (DWT) for smoothing the raw recovered spectrum
from the binned data. The results obtained here reconfirm and sharpen the
conclusion drawn from our previous analysis of the WMAP 1st year data. A sharp
cut off around the horizon scale and a bump after the horizon scale seem to be
a common feature for all of these reconstructed primordial spectra. We have
shown that although the WMAP 3 year data prefers a lower value of matter
density for a power law form of the primordial spectrum, for a free form of the
spectrum, we can get a very good likelihood to the data for higher values of
matter density. We have also shown that even a flat CDM model, allowing a free
form of the primordial spectrum, can give a very high likelihood fit to the
data. Theoretical interpretation of the results is open to the cosmology
community. However, this work provides strong evidence that the data retains
discriminatory power in the cosmological parameter space even when there is
full freedom in choosing the primordial spectrum.Comment: 13 pages, 4 figures, uses Revtex4, new analysis and results,
references added, matches version accepted to Phys. Rev.
The Small Scale Velocity Dispersion of Galaxies: A Comparison of Cosmological Simulations
The velocity dispersion of galaxies on small scales ( Mpc),
, can be estimated from the anisotropy of the galaxy-galaxy
correlation function in redshift space. We apply this technique to
``mock-catalogs'' extracted from N-body simulations of several different
variants of Cold Dark Matter dominated cosmological models to obtain results
which may be consistently compared to similar results from observations. We
find a large variation in the value of in different
regions of the same simulation. We conclude that this statistic should not be
considered to conclusively rule out any of the cosmological models we have
studied. We attempt to make the statistic more robust by removing clusters from
the simulations using an automated cluster-removing routine, but this appears
to reduce the discriminatory power of the statistic. However, studying
as clusters with different internal velocity dispersions are
removed leads to interesting information about the amount of power on cluster
and subcluster scales. We also compute the pairwise velocity dispersion
directly and compare this to the values obtained using the Davis-Peebles
method, and find that the agreement is fairly good. We evaluate the models used
for the mean streaming velocity and the pairwise peculiar velocity distribution
in the original Davis-Peebles method by comparing the models with the results
from the simulations.Comment: 20 pages, uuencoded (Latex file + 8 Postscript figures), uses AAS
macro
Cosmic Variance In the Transparency of the Intergalactic Medium After Reionization
Following the completion of cosmic reionization, the mean-free-path of
ionizing photons was set by a population of Ly-limit absorbers. As the
mean-free-path steadily grew, the intensity of the ionizing background also
grew, thus lowering the residual neutral fraction of hydrogen in ionization
equilibrium throughout the diffuse intergalactic medium (IGM). Ly-alpha photons
provide a sensitive probe for tracing the distribution of this residual
hydrogen at the end of reionization. Here we calculate the cosmic variance
among different lines-of-sight in the distribution of the mean Ly-alpha optical
depths. We find fractional variations in the effective post-reionization
optical depth that are of order unity on a scale of ~100 co-moving Mpc, in
agreement with observations towards high-redshift quasars. Significant
contributions to these variations are provided by the cosmic variance in the
density contrast on the scale of the mean-free-path for ionizing photons, and
by fluctuations in the ionizing background induced by delayed or enhanced
structure formation. Cosmic variance results in a highly asymmetric
distribution of transmission through the IGM, with fractional fluctuations in
Ly-alpha transmission that ar larger than in Ly-beta transmission.Comment: 7 pages 3 figures. Replaced with version accepted for publication in
Ap
Biased-estimations of the Variance and Skewness
Nonlinear combinations of direct observables are often used to estimate
quantities of theoretical interest. Without sufficient caution, this could lead
to biased estimations. An example of great interest is the skewness of
the galaxy distribution, defined as the ratio of the third moment \xibar_3
and the variance squared \xibar_2^2. Suppose one is given unbiased estimators
for \xibar_3 and \xibar_2^2 respectively, taking a ratio of the two does
not necessarily result in an unbiased estimator of . Exactly such an
estimation-bias affects most existing measurements of . Furthermore,
common estimators for \xibar_3 and \xibar_2 suffer also from this kind of
estimation-bias themselves: for \xibar_2, it is equivalent to what is
commonly known as the integral constraint. We present a unifying treatment
allowing all these estimation-biases to be calculated analytically. They are in
general negative, and decrease in significance as the survey volume increases,
for a given smoothing scale. We present a re-analysis of some existing
measurements of the variance and skewness and show that most of the well-known
systematic discrepancies between surveys with similar selection criteria, but
different sizes, can be attributed to the volume-dependent estimation-biases.
This affects the inference of the galaxy-bias(es) from these surveys. Our
methodology can be adapted to measurements of analogous quantities in quasar
spectra and weak-lensing maps. We suggest methods to reduce the above
estimation-biases, and point out other examples in LSS studies which might
suffer from the same type of a nonlinear-estimation-bias.Comment: 28 pages of text, 9 ps figures, submitted to Ap
Percolation Analysis of a Wiener Reconstruction of the IRAS 1.2 Jy Redshift Catalog
We present percolation analyses of Wiener Reconstructions of the IRAS 1.2 Jy
Redshift Survey. There are ten reconstructions of galaxy density fields in real
space spanning the range to , where
, is the present dimensionless density and
is the bias factor. Our method uses the growth of the largest cluster
statistic to characterize the topology of a density field, where Gaussian
randomized versions of the reconstructions are used as standards for analysis.
For the reconstruction volume of radius, Mpc,
percolation analysis reveals a slight `meatball' topology for the real space,
galaxy distribution of the IRAS survey.
cosmology-galaxies:clustering-methods:numericalComment: Revised version accepted for publication in The Astrophysical
Journal, January 10, 1997 issue, Vol.47
Clustering of the Diffuse Infrared Light from the COBE DIRBE maps. III. Power spectrum analysis and excess isotropic component of fluctuations
The cosmic infrared background (CIB) radiation is the cosmic repository for
energy release throughout the history of the universe. Using the all-sky data
from the COBE DIRBE instrument at wavelengths 1.25 - 100 mic we attempt to
measure the CIB fluctuations. In the near-IR, foreground emission is dominated
by small scale structure due to stars in the Galaxy. There we find a strong
correlation between the amplitude of the fluctuations and Galactic latitude
after removing bright foreground stars. Using data outside the Galactic plane
() and away from the center () we extrapolate
the amplitude of the fluctuations to cosec. We find a positive intercept
of nW/m2/sr at 1.25, 2.2,3.5 and 4.9 mic
respectively, where the errors are the range of 92% confidence limits. For
color subtracted maps between band 1 and 2 we find the isotropic part of the
fluctuations at nW/m2/sr. Based on detailed numerical and
analytic models, this residual is not likely to originate from the Galaxy, our
clipping algorithm, or instrumental noise. We demonstrate that the residuals
from the fit used in the extrapolation are distributed isotropically and
suggest that this extra variance may result from structure in the CIB. For
2\deg< \theta < 15^\deg, a power-spectrum analysis yields firm upper limits
of (\theta/5^\deg) \times\delta F_{\rm rms} (\theta) < 6, 2.5, 0.8, 0.5
nW/m2/sr at 1.25, 2.2, 3.5 and 4.9 mic respectively. From 10-100 mic, the upper
limits <1 nW/m2/sr.Comment: Ap.J., in press. 69 pages including 24 fig
A Novel Use of Light Guides and Wavelength Shifting Plates for the Detection of Scintillation Photons in Large Liquid Argon Detectors
Scintillation light generated as charged particles traverse large liquid
argon detectors adds valuable information to studies of weakly-interacting
particles. This paper uses both laboratory measurements and cosmic ray data
from the Blanche dewar facility at Fermilab to characterize the efficiency of
the photon detector technology developed at Indiana University for the single
phase far detector of DUNE. The efficiency of this technology was found to be
0.48% at the readout end when the detector components were characterized with
laboratory measurements. A second determination of the efficiency using cosmic
ray tracks is in reasonable agreement with the laboratory determination. The
agreement of these two efficiency determinations supports the result that
minimum ionizing muons generate photons/MeV as
they cross the LAr volume.Comment: Accepted version (without final editorial corrections
- …