611 research outputs found

    Study of Gasohol as Alternative Fuel for Gasoline Substitution: Characteristics and Performances

    Full text link
    Gasohol is a mixture of premium petrol (gasoline) with alcohol, in this case ethanol. The use of gasohol can reduce fuel consumption without having to modify the existing engine. Therefore, this research is conducted to study the characteristics and performance of gasohol in various mixing ratios, which includes analysis of physical properties and the use of gasohol in the machine. Results show that the addition of technical ethanol at 7.0169%v increases the value of gasohol vapor pressure on the value of 8.6682 psi (7.7 psi for regular gasoline). Gasohol with technical ethanol content above 30%v decreases vapor pressure, promotes phase separation, and causes a sharp drop in temperature from 40%v distillation. In term of corrosivity, gasohol with up to 50%v ethanol content has the same corrosion level with regular gasoline, which is corrosion level 1A. Based on gasohol characteristics test, it is known that gasohol with technical ethanol content below 20%v can be used as a fuel substitute for gasoline. Real-time performance test of gasohol in engines has shown that the addition of ethanol content in gasohol tend to increase the engine power at a certain compression ratio, but it also increases fuel consumption because the heat value of ethanol is lower than gasoline. Machine in gasohol with ethanol content below 20%v can operate smoothly without having to modify the engine. Based on the studies that have been done, gasohol in the range of 10%v ethanol content is well-functioned as a substitute for gasoline fuel and meets fuel specifications required by the General Director of Oil and Gas. The feasibility of using gasohol as an alternative fuel can be studied further

    Mean-Field Effects on the Phosphorescence of Dinuclear Re(I) Complex Polymorphs

    Get PDF
    A computational study rationalizes the different phosphorescence colors of two highly emitting crystal polymorphs of a dinuclear Re(I) complex, [Re2(μ-Cl)2(CO)6(μ-4,5-(Me3Si)2pyridazine)]. The electrostatic interactions between the charge distributions on neighboring molecules inside the crystal are responsible for the different stabilization of the emitting triplet state because of the different molecular packing. These self-consistent effects play a major role in the phosphorescence of crystals made of polar and polarizable molecular units, offering a powerful handle to tune the luminescence wavelength in the solid state through supramolecular engineering

    A reduced complexity numerical method for optimal gate synthesis

    Full text link
    Although quantum computers have the potential to efficiently solve certain problems considered difficult by known classical approaches, the design of a quantum circuit remains computationally difficult. It is known that the optimal gate design problem is equivalent to the solution of an associated optimal control problem, the solution to which is also computationally intensive. Hence, in this article, we introduce the application of a class of numerical methods (termed the max-plus curse of dimensionality free techniques) that determine the optimal control thereby synthesizing the desired unitary gate. The application of this technique to quantum systems has a growth in complexity that depends on the cardinality of the control set approximation rather than the much larger growth with respect to spatial dimensions in approaches based on gridding of the space, used in previous literature. This technique is demonstrated by obtaining an approximate solution for the gate synthesis on SU(4)SU(4)- a problem that is computationally intractable by grid based approaches.Comment: 8 pages, 4 figure

    Extremely fast triplet formation by charge recombination in a Nile Red/fullerene flexible dyad

    Get PDF
    A donor/acceptor dyad was obtained by linking Nile Red and fullerene to a calix[4]arene scaffold. The dyad was spectroscopically characterized, both with steady-state and ultrafast transient absorption experiments, as well as with electrochemical and spectroelectrochemical techniques. We demonstrate extremely fast and efficient formation of a long-lived excited triplet localized on the fullerene moiety in this system, occurring in about 80 ps in toluene and 220 ps in chloroform. The mechanism of this process is investigated and discussed. The spectroscopic and electrochemical characterization suggests the occurrence of electron transfer from Nile Red to fullerene, leading to the formation of a charge-separated state. This state lives very briefly and, because of the small interaction between the electron donor and acceptor, promotes a singlet/triplet state mixing, inducing charge recombination and efficient triplet formation

    Injury-experienced satellite cells retain long-term enhanced regenerative capacity

    Get PDF
    Background: Inflammatory memory or trained immunity is a recently described process in immune and non-immune tissue resident cells, whereby previous exposure to inflammation mediators leads to a faster and stronger responses upon secondary challenge. Whether previous muscle injury is associated with altered responses to subsequent injury by satellite cells (SCs), the muscle stem cells, is not known. Methods: We used a mouse model of repeated muscle injury, in which intramuscular cardiotoxin (CTX) injections were administered 50 days apart in order to allow for full recovery of the injured muscle before the second injury. The effect of prior injury on the phenotype, proliferation and regenerative potential of satellite cells following a second injury was examined in vitro and in vivo by immunohistochemistry, RT-qPCR and histological analysis. Results: We show that SCs isolated from muscle at 50 days post-injury (injury-experienced SCs (ieSCs)) enter the cell cycle faster and form bigger myotubes when cultured in vitro, compared to control SCs isolated from uninjured contralateral muscle. Injury-experienced SCs were characterized by the activation of the mTORC 1 signaling pathway, suggesting they are poised to activate sooner following a second injury. Consequently, upon second injury, SCs accumulate in greater numbers in muscle at 3 and 10 days after injury. These changes in SC phenotype and behavior were associated with accelerated muscle regeneration, as evidenced by an earlier appearance of bigger fibers and increased number of myonuclei per fiber at day 10 after the second injury. Conclusions: Overall, we show that skeletal muscle injury has a lasting effect on SC function priming them to respond faster to a subsequent injury. The ieSCs have long-term enhanced regenerative properties that contribute to accelerated regeneration following a secondary challenge

    Additional value of advanced ultrasonography in pregnancies with two inconclusive cell-free DNA draws

    Get PDF
    Objective: We aimed to evaluate the additional value of advanced fetal anatomical assessment by ultrasound in pregnancies with twice inconclusive noninvasive testing (NIPT) due to low fetal fraction (FF). Methods: We performed a multicenter-retrospective study between 2017 and 2020 including 311 pregnancies with twice inconclusive NIPT due to low FF ≤ 1%. Women were offered invasive testing and advanced fetal anatomical assessment at ≤18 weeks' gestation. Ultrasound findings, genetic testing, and pregnancy/postnatal outcomes were evaluated. Results: Ninety-two/311 (29.6%) women underwent invasive testing. Structural anomalies were diagnosed in 13/311 (4.2%) pregnancies (nine at the first scan and four at follow-up). In 6/13 (46.2%) cases, genetic aberrations were confirmed (one case of Trisomy 13 (detectable by NIPT), two of Triploidy, one of 16q12-deletion, HCN4-mutation and UPD(16) (nondetectable by NIPT). Genetic aberrations were found in 4/298 (1.3%) structurallynormal pregnancies (one 47XYY, two microscopic aberrations, one monogenic disorder found postpartum). Structural anomalies in genetically normal fetuses (2.0%) were not more prevalent compared to the general pregnant population (OR 1.0 [0.4–2.2]). Conclusion: In pregnancies with twice inconclusive NIPT due to low FF, fetal structural anomalies are not more prevalent than in the general obstetric population. The detailed anatomical assessment has the added value to detect phenotypical features suggestive of chromosomal/genetic aberrations and identify pregnancies where advanced genetic testing may be indicated
    corecore