2,885 research outputs found

    High Temperature Limit of the N=2 N= 2 IIA Matrix Model

    Get PDF
    The high temperature limit of a system of two D-0 branes is investigated. The partition function can be expressed as a power series in β\beta (inverse temperature). The leading term in the high temperature expression of the partition function and effective potential is calculated {\em exactly}. Physical quantities like the mean square separation can also be exactly determined in the high temperature limit. We comment on SU(3) IIB matrix model and the difficulties to study it.Comment: Lattice 2000 (Gravity and Matrix Models

    Inverse Transport Theory of Photoacoustics

    Full text link
    We consider the reconstruction of optical parameters in a domain of interest from photoacoustic data. Photoacoustic tomography (PAT) radiates high frequency electromagnetic waves into the domain and measures acoustic signals emitted by the resulting thermal expansion. Acoustic signals are then used to construct the deposited thermal energy map. The latter depends on the constitutive optical parameters in a nontrivial manner. In this paper, we develop and use an inverse transport theory with internal measurements to extract information on the optical coefficients from knowledge of the deposited thermal energy map. We consider the multi-measurement setting in which many electromagnetic radiation patterns are used to probe the domain of interest. By developing an expansion of the measurement operator into singular components, we show that the spatial variations of the intrinsic attenuation and the scattering coefficients may be reconstructed. We also reconstruct coefficients describing anisotropic scattering of photons, such as the anisotropy coefficient g(x)g(x) in a Henyey-Greenstein phase function model. Finally, we derive stability estimates for the reconstructions

    Evaluation of Naked Barley Landraces for Agro-morphological Traits

    Full text link
    Naked barley (Hordeum vulgare var. nudum L.) is a traditional, culturally important, climate-resilient winter cereal crop of Nepal. Evaluation of the naked barely genotypes for yield and disease is fundamental for their efficient utilization in plant breeding schemes and effective conservation programs. Therefore, to identify high yielding and yellow rust resistant landraces of naked barley for hilly and mountainous agro-ecosystem, twenty naked barley landraces collected from different locations of Nepal, were evaluated in randomized complete block design (RCBD) with three replications during winter season of 2016 and 2017 at Khumaltar, Lalitpur, Nepal. Combined analysis of variances revealed that NGRC04902 (3.46 t/ha), NGRC00886 (3.28 t/ha), NGRC02309 (3.21 t/ha) and NGRC06026 (3.10 t/ha) were the high yielding landraces and statistically at par with the released variety 'Solu Uwa' (3.15 t/ha). The landraces namely NGRC00837 (ACI Value: 1.86) was found resistant to yellow rust diseases. Landraces NGRC06034 (131.7 days) and NGRC02363 (130.8 days) were found early maturing and NGRC02306 (94.36 cm) was found dwarf landraces among tested genotypes. These landraces having higher yield and better resistance to yellow rust need to be deployed to farmers' field to diversify the varietal options and used in resistant breeding program to improve the productivity of naked barley for Nepalese farmers

    Biotechnology for Conservation and Utilization of Agricultural Plant Genetic Resources in Nepal

    Full text link
    Agricultural biodiversity is the basis of human life and food security. Nepal with 577 cultivated species possesses huge diversity at varietal as well as landrace levels. In most agricultural crops the rapid genetic erosion due to several reasons is a common phenomenon. Thus, considering the importance of agricultural biodiversity declared by Convention on Biological Diversity for sustainable food production, National Agriculture Genetic Resources Center (NAGRC) has been established for conservation and sustainable utilization of agricultural biodiversity. This paper thus delineates the application of biotechnological tools adopted by NAGRC for effective and efficient conservation and use of agricultural plant genetic resources (APGRs). Among the adopted technologies, tissue bank using shoot tip culture of vegetatively propagating and recalcitrant crops eg potato, sugarcane, banana, sweet potato, etc are in function. Under the molecular marker technology, currently random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers have been used for developing DNA profiles, identifying duplicates in the collections, assessing genetic diversity and screening accessions against economic traits. DNA bank has also been created for storing DNA of indigenous crops and these DNA can be accessed for research and study. Genotypic database has been developed for chayote, finger millet, wheat and maize for identification and selection of the accessions.Journal of Nepal Agricultural Research Council Vol.3 2017: 49-5

    Inverse Diffusion Theory of Photoacoustics

    Full text link
    This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photo-acoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well-studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schroedinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n2n internal data for well-chosen boundary conditions are available, where nn is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics (CGO) solutions.Comment: 24 page

    The Cop Number of the One-Cop-Moves Game on Planar Graphs

    Full text link
    Cops and robbers is a vertex-pursuit game played on graphs. In the classical cops-and-robbers game, a set of cops and a robber occupy the vertices of the graph and move alternately along the graph's edges with perfect information about each other's positions. If a cop eventually occupies the same vertex as the robber, then the cops win; the robber wins if she can indefinitely evade capture. Aigner and Frommer established that in every connected planar graph, three cops are sufficient to capture a single robber. In this paper, we consider a recently studied variant of the cops-and-robbers game, alternately called the one-active-cop game, one-cop-moves game or the lazy-cops-and-robbers game, where at most one cop can move during any round. We show that Aigner and Frommer's result does not generalise to this game variant by constructing a connected planar graph on which a robber can indefinitely evade three cops in the one-cop-moves game. This answers a question recently raised by Sullivan, Townsend and Werzanski.Comment: 32 page

    Introduction to the Special Section

    Get PDF

    Introduction to the Special Section

    Get PDF
    corecore