8,055 research outputs found

    Hydraulic flow through a channel contraction: multiple steady states

    Get PDF
    We have investigated shallow water flows through a channel with a contraction by experimental and theoretical means. The horizontal channel consists of a sluice gate and an upstream channel of constant width b0b_0 ending in a linear contraction of minimum width bcb_c. Experimentally, we observe upstream steady and moving bores/shocks, and oblique waves in the contraction, as single and multiple steady states, as well as a steady reservoir with a complex hydraulic jump in the contraction occurring in a small section of the bc/b0b_c/b_0 and Froude number parameter plane. One-dimensional hydraulic theory provides a comprehensive leading-order approximation, in which a turbulent frictional parametrization is used to achieve quantitative agreement. An analytical and numerical analysis is given for two-dimensional supercritical shallow water flows. It shows that the one-dimensional hydraulic analysis for inviscid flows away from hydraulic jumps holds surprisingly well, even though the two-dimensional oblique hydraulic jump patterns can show large variations across the contraction channel

    Constrained by managerialism : caring as participation in the voluntary social services

    Get PDF
    The data in this study show that care is a connective process, underlying and motivating participation and as a force that compels involvement in the lives of others, care is at least a micro-participative process. Care or affinity not only persisted in the face of opposition, but it was also used by workers as a counter discourse and set of practices with which to resist the erosion of worker participation and open up less autonomized practices and ways of connecting with fellow staff, clients and the communities they served. The data suggest that while managerialism and taylorised practice models may remove or reduce opportunities for worker participation, care is a theme or storyline that gave workers other ways to understand their work and why they did it, as well as ways they were prepared to resist managerial priorities and directives, including the erosion of various kinds of direct and indirect participation. The degree of resistance possible, even in the highly technocratic worksite in Australia, shows that cracks and fissures exist within managerialism

    Evaluation of a Revised Curriculum: A Four-Year Qualitative Study of Student Perceptions

    Get PDF
    Following curricular revisions at the Virginia Commonwealth University School of Dentistry, this longitudinal study was designed to determine students\u27 perceptions of their educational experience in the revised curriculum. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) open-ended response questionnaire was administered to students in the class of 2011 (N=89) in January of each academic year, 2008 through 2011, followed by focus groups three months prior to graduation. The overall response rate for the questionnaire was 69 percent, and a total of fourteen students participated in four focus groups. Cumulatively, 1,382 responses (SWOT=984 and focus groups=398) were qualitatively analyzed, and five themes emerged: 1) early clinical experiences led to a perceived readiness for direct patient care; 2) the pace and organization of the revised condensed preclinical curriculum were perceived as hectic yet were appreciated as necessary preparation for patient care; 3) most faculty members were seen as committed to student learning, but a few were reported to have poor teaching skills and attitudes when interacting with students; 4) a perceived lack of patients led to fewer clinical experiences and a decrease in student confidence; and 5) some curricular content was seen to be redundant and irrelevant to future practice. The results indicate that the students were satisfied with aspects of their educational experience, suggesting the revised curriculum\u27s preliminary success in meeting its goals of earlier patient care, a condensed preclinical curriculum, and a student-friendly environment. As the curriculum is adapted in response to student feedback, ongoing evaluation is necessary and should be complemented by other evaluation indicators such as faculty perceptions and student learning outcomes

    Macroscopic and Local Magnetic Moments in Si-doped CuGeO3_3 with Neutron and μ\muSR Studies

    Full text link
    The temperature-concentration phase diagram of the Si-doped spin-Peierls compound CuGeO3_{3} is investigated by means of neutron scattering and muon spin rotation spectroscopy in order to determine the microscopic distribution of the magnetic and lattice dimerised regions as a function of doping. The analysis of the zero-field muon spectra has confirmed the spatial inhomogeneity of the staggered magnetisation that characterises the antiferromagnetic superlattice peaks observed with neutrons. In addition, the variation of the macroscopic order parameter with doping can be understood by considering the evolution of the local magnetic moment as well as of the various regions contributing to the muon signal

    Spin dynamics of the ordered dipolar octupolar pseudospin 1 2 pyrochlore Nd2Zr2O7 probed by muon spin relaxation

    Get PDF
    We present a muon spin relaxation study on the Ising pyrochlore Nd2Zr2O7 which develops an all in all out magnetic order below 0.4 K. At 20 mK, far below the ordering transition temperature, the zero field muon spin relaxation spectra showno static features and can be well described by a dynamical Gaussian broadened Gaussian Kubo Toyabe function indicating strong fluctuations of the ordered state. The spectra of the paramagnetic state below 4.2 K reveal anomalously slow paramagnetic spin dynamics and show only a small difference with the spectra of the ordered state.We find that the fluctuation rate decreases with decreasing temperature and becomes nearly temperature independent below the transition temperature, indicating persistent slow spin dynamics in the ground state. The field distribution width shows a small but sudden increase at the transition temperature and then becomes almost constant. The spectra in applied longitudinal fields are well fitted by the conventional dynamical Gaussian Kubo Toyabe function, which further supports the dynamical nature of the ground state. The fluctuation rate shows a peak as a function of external field which is associated with a field induced spin flip transition. The strong dynamics in the ordered state is attributed to the transverse coupling of the Ising spins introduced by the multipole interaction

    An application of simulated annealing to the optimum design of reinforced concrete retaining structures

    Get PDF
    This paper reports on the application of a simulated annealing algorithm to the minimum cost design of reinforced concrete retaining structures. Cantilever retaining walls are investigated, being representative of reinforced concrete retaining structures that are required to resist a combination of earth and hydrostatic loading. To solve such a constrained optimisation problem, a modified simulated annealing algorithm is proposed that avoids the simple rejection of infeasible solutions and improves convergence to a minimum cost. The algorithm was implemented using an object-orientated visual programming language, offering facilities for continual monitoring, assessing and changing of the simulated annealing control parameters. Results show that the simulated annealing can be successfully applied to the minimum cost design of reinforced concrete retaining walls, overcoming the difficulties associated with the practical and realistic assessment of the structural costs and their complex inter-relationship with the imposed constraints on the solution space

    Evidence for spin liquid ground state in SrDy2_2O4_4 frustrated magnet probed by muSR

    Full text link
    Muon spin relaxation (μ\muSR) measurements were carried out on SrDy2_2O4_4, a frustrated magnet featuring short range magnetic correlations at low temperatures. Zero-field muon spin depolarization measurements demonstrate that fast magnetic fluctuations are present from T=300T=300 K down to 20 mK. The coexistence of short range magnetic correlations and fluctuations at T=20T=20 mK indicates that SrDy2_2O4_4 features a spin liquid ground state. Large longitudinal fields affect weakly the muon spin depolarization, also suggesting the presence of fast fluctuations. For a longitudinal field of μ0H=2\mu_0H=2 T, a non-relaxing asymmetry contribution appears below T=6T=6 K, indicating considerable slowing down of the magnetic fluctuations as field-induced magnetically-ordered phases are approached.Comment: 6 pages, 4 figures, to be published as a proceeding of HFM2016 in Journal of Physics: Conference Series (JPCS

    Quantum Coherence at Low Temperatures in Mesoscopic Systems: Effect of Disorder

    Full text link
    We study the disorder dependence of the phase coherence time of quasi one-dimensional wires and two-dimensional (2D) Hall bars fabricated from a high mobility GaAs/AlGaAs heterostructure. Using an original ion implantation technique, we can tune the intrinsic disorder felt by the 2D electron gas and continuously vary the system from the semi-ballistic regime to the localized one. In the diffusive regime, the phase coherence time follows a power law as a function of diffusion coefficient as expected in the Fermi liquid theory, without any sign of low temperature saturation. Surprisingly, in the semi-ballistic regime, it becomes independent of the diffusion coefficient. In the strongly localized regime we find a diverging phase coherence time with decreasing temperature, however, with a smaller exponent compared to the weakly localized regime.Comment: 21 pages, 30 figure
    corecore