84 research outputs found

    The point spread function of electrons in a magnetic field, and the decay of the free neutron

    Full text link
    Experiments in nuclear and particle physics often use magnetic fields to guide charged reaction products to a detector. Due to their gyration in the guide field, the particles hit the detector within an area that can be considerably larger than the diameter of the source where the particles are produced. This blurring of the image of the particle source on the detector surface is described by a suitable point spread function (PSF), which is defined as the image of a point source. We derive simple analytical expressions for such magnetic PSFs, valid for any angular distribution of the emitted particles that can be developed in Legendre polynomials. We investigate this rather general problem in the context of neutron beta decay spectrometers and study the effect of limited detector size on measured neutron decay correlation parameters. To our surprise, insufficient detector size does not affect much the accuracy of such measurements, even for rather large radii of gyration. This finding can considerably simplify the layout of the respective spectrometers.Comment: 24 pages, 12 figure

    Quantum motion of a neutron in a wave-guide in the gravitational field

    Full text link
    We study theoretically the quantum motion of a neutron in a horizontal wave-guide in the gravitational field of the Earth. The wave-guide in question is equipped with a mirror below and a rough absorber above. We show that such a system acts as a quantum filter, i.e. it effectively absorbs quantum states with sufficiently high transversal energy but transmits low-energy states. The states transmitted are mainly determined by the potential well formed by the gravitational field of the Earth and the mirror. The formalism developed for quantum motion in an absorbing wave-guide is applied to the description of the recent experiment on the observation of the quantum states of neutrons in the Earth's gravitational field

    The Pioneer anomaly and the holographic scenario

    Full text link
    In this paper we discuss the recently obtained relation between the Verlinde's holographic model and the first phenomenological Modified Newtonian dynamics. This gives also a promising possible explanation to the Pioneer anomaly.Comment: 5 pages, Accepted for publication in Astrophysics & Space Scienc

    Is the Unitarity of the quark-mixing-CKM-matrix violated in neutron β\beta-decay?

    Full text link
    We report on a new measurement of neutron β\beta-decay asymmetry. From the result \linebreak A0A_0 = -0.1189(7), we derive the ratio of the axial vector to the vector coupling constant λ\lambda = gA/gV{\it g_A/g_V} = -1.2739(19). When included in the world average for the neutron lifetime τ\tau = 885.7(7)s, this gives the first element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix VudV_{ud} . With this value and the Particle Data Group values for VusV_{us} and VubV_{ub}, we find a deviation from the unitarity condition for the first row of the CKM matrix of Δ\Delta = 0.0083(28), which is 3.0 times the stated error

    First Observation of PP-odd γ\gamma Asymmetry in Polarized Neutron Capture on Hydrogen

    Full text link
    We report the first observation of the parity-violating 2.2 MeV gamma-ray asymmetry AγnpA^{np}_\gamma in neutron-proton capture using polarized cold neutrons incident on a liquid parahydrogen target at the Spallation Neutron Source at Oak Ridge National Laboratory. AγnpA^{np}_\gamma isolates the ΔI=1\Delta I=1, \mbox{3S13P1^{3}S_{1}\rightarrow {^{3}P_{1}}} component of the weak nucleon-nucleon interaction, which is dominated by pion exchange and can be directly related to a single coupling constant in either the DDH meson exchange model or pionless EFT. We measured Aγnp=[3.0±1.4(stat)±0.2(sys)]×108A^{np}_\gamma = [-3.0 \pm 1.4 (stat) \pm 0.2 (sys)]\times 10^{-8}, which implies a DDH weak πNN\pi NN coupling of hπ1=[2.6±1.2(stat)±0.2(sys)]×107h_{\pi}^{1} = [2.6 \pm 1.2(stat) \pm 0.2(sys)] \times 10^{-7} and a pionless EFT constant of C3S13P1/C0=[7.4±3.5(stat)±0.5(sys)]×1011C^{^{3}S_{1}\rightarrow ^{3}P_{1}}/C_{0}=[-7.4 \pm 3.5 (stat) \pm 0.5 (sys)] \times 10^{-11} MeV1^{-1}. We describe the experiment, data analysis, systematic uncertainties, and the implications of the result.Comment: 6 pages, 5 figure

    A clean, bright, and versatile source of neutron decay products

    Full text link
    We present a case study on a new type of cold neutron beam station for the investigation of angular correlations in the beta-decay of free neutrons. With this beam station, called PERC, the 'active decay volume' lies inside the neutron guide, and the charged neutron decay products are magnetically guided towards the end of the neutron guide. Hence, the guide delivers at its exit a beam of decay electrons and protons, under well-defined and precisely variable conditions, which can be well separated from the cold neutron beam. In this way a general-purpose source of neutron decay products is obtained which can be used for various different experiments in neutron decay correlation spectroscopy. A gain in phase space density of several orders of magnitude can be achieved with PERC, as compared to existing neutron decay spectrometers. Neutron beam related background is separately measurable in PERC, and magnetic mirror effects on the charged neutron decay products and edge effects in the active neutron beam volume are both strongly suppressed. Therefore the spectra and angular distributions of the emerging decay particles will be distortion-free on the level of 10^-4, more than 10 times better than achieved today.Comment: 20 pages, 6 figure

    Precision pulse shape simulation for proton detection at the Nab experiment

    Full text link
    The Nab experiment at Oak Ridge National Laboratory, USA, aims to measure the beta-antineutrino angular correlation following neutron β\beta decay to an anticipated precision of approximately 0.1\%. The proton momentum is reconstructed through proton time-of-flight measurements, and potential systematic biases in the timing reconstruction due to detector effects must be controlled at the nanosecond level. We present a thorough and detailed semiconductor and quasiparticle transport simulation effort to provide precise pulse shapes, and report on relevant systematic effects and potential measurement schemes

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table
    corecore