1,205 research outputs found
Dissipative Binding of Lattice Bosons through Distance-Selective Pair Loss
We show that in a gas of ultra cold atoms distance selective two-body loss
can be engineered via the resonant laser excitation of atom pairs to
interacting electronic states. In an optical lattice this leads to a
dissipative Master equation dynamics with Lindblad jump operators that
annihilate atom pairs with a specific interparticle distance. In conjunction
with coherent hopping between lattice sites this unusual dissipation mechanism
leads to the formation of coherent long-lived complexes that can even exhibit
an internal level structure which is strongly coupled to their external motion.
We analyze this counterintuitive phenomenon in detail in a system of hard-core
bosons. While current research has established that dissipation in general can
lead to the emergence of coherent features in many-body systems our work shows
that strong non-local dissipation can effectuate a binding mechanism for
particles
Evaluation of on-board hydrogen storage methods for hypersonic vehicles
Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model
Interoperability between Heterogeneous Federation Architectures: Illustration with SAML and WS-Federation
International audienceDigital identity management intra and inter information systems, and, service oriented architectures, are the roots of identity federation. This kind of security architectures aims at enabling information system interoperability. Existing architectures, however, do not consider interoperability of heterogeneous federation architectures, which rely on different federation protocols.In this paper, we try to initiate an in-depth reflection on this issue, through the comparison of two main federation architecture specifications: SAML and WS-Federation. We firstly propose an overall outline of identity federation. We furthermore address the issue of interoperability for federation architectures using a different federation protocol. Afterwards, we compare SAML and WS-Federation. Eventually, we define the ways of convergence, and therefore, of interoperability
Sustainable development of smallholder crop-livestock farming in developing countries
Meeting the growing demand for animal-sourced food, prompted by population growth and increases in average per-capita income in low-income countries, is a major challenge. Yet, it also presents significant potential for agricultural growth, economic development, and reduction of poverty in rural areas. The main constraints to livestock producers taking advantage of growing markets include; lack of forage and feed gaps, communal land tenure, limited access to land and water resources, weak institutions, poor infrastructure and environmental degradation. To improve rural livelihood and food security in smallholder crop-livestock farming systems, concurrent work is required to address issues regarding efficiency of production, risk within systems and development of whole value chain systems. This paper provides a review of several forage basedstudies in tropical and non-tropical dry areas of the developing countries. A central tenet of this paper is that forages have an essential role in agricultural productivity, environmental sustainability and livestock nutrition in smallholder mixed farming systems
Numerical study of two-body correlation in a 1D lattice with perfect blockade
We compute the dynamics of excitation and two-body correlation for two-level
"pseudoatoms" in a 1D lattice. We adopt a simplified model where pair
excitation within a finite range is perfectly blocked. Each superatom is
initially in the ground state, and then subjected to an external driving laser
with Rabi frequency satisfying a Poissonian distribution, mimicking the
scenario as in Rydberg gases. We find that two-body quantum correlation drops
very fast with the distance between pseudoatoms. However, the total correlation
decays slowly even at large distance. Our results may be useful to the
understanding of Rydberg gases in the strong blockade regime
Improving the performance of bright quantum dot single photon sources using amplitude modulation
Single epitaxially-grown semiconductor quantum dots have great potential as
single photon sources for photonic quantum technologies, though in practice
devices often exhibit non-ideal behavior. Here, we demonstrate that amplitude
modulation can improve the performance of quantum-dot-based sources. Starting
with a bright source consisting of a single quantum dot in a fiber-coupled
microdisk cavity, we use synchronized amplitude modulation to temporally filter
the emitted light. We observe that the single photon purity, temporal overlap
between successive emission events, and indistinguishability can be greatly
improved with this technique. As this method can be applied to any triggered
single photon source, independent of geometry and after device fabrication, it
is a flexible approach to improve the performance of solid-state systems, which
often suffer from excess dephasing and multi-photon background emission
Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling
High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom
band are challenges facing the development of fibre-based long-haul quantum
communication networks. Here we report a very fast single photon source in the
1,550-nm telecom band, which is achieved by a large Purcell enhancement that
results from the coupling of a single InAs quantum dot and an InP photonic
crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced
by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550
nm. We also demonstrate that this emission exhibits an enhanced anti-bunching
dip. This is the first realization of nanocavity-enhanced single photon
emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system
in the telecom band thus provides a bright high-bit-rate non-classical single
photon source that offers appealing novel opportunities for the development of
a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure
Tunable Indistinguishable Photons From Remote Quantum Dots
Single semiconductor quantum dots have been widely studied within devices
that can apply an electric field. In the most common system, the low energy
offset between the InGaAs quantum dot and the surrounding GaAs material limits
the magnitude of field that can be applied to tens of kVcm^-1, before carriers
tunnel out of the dot. The Stark shift experienced by the emission line is
typically 1 meV. We report that by embedding the quantum dots in a quantum well
heterostructure the vertical field that can be applied is increased by over an
order of magnitude whilst preserving the narrow linewidths, high internal
quantum efficiencies and familiar emission spectra. Individual dots can then be
continuously tuned to the same energy allowing for two-photon interference
between remote, independent, quantum dots
On-demand semiconductor single-photon source with near-unity indistinguishability
Single photon sources based on semiconductor quantum dots offer distinct
advantages for quantum information, including a scalable solid-state platform,
ultrabrightness, and interconnectivity with matter qubits. A key prerequisite
for their use in optical quantum computing and solid-state networks is a high
level of efficiency and indistinguishability. Pulsed resonance fluorescence
(RF) has been anticipated as the optimum condition for the deterministic
generation of high-quality photons with vanishing effects of dephasing. Here,
we generate pulsed RF single photons on demand from a single,
microcavity-embedded quantum dot under s-shell excitation with 3-ps laser
pulses. The pi-pulse excited RF photons have less than 0.3% background
contributions and a vanishing two-photon emission probability.
Non-postselective Hong-Ou-Mandel interference between two successively emitted
photons is observed with a visibility of 0.97(2), comparable to trapped atoms
and ions. Two single photons are further used to implement a high-fidelity
quantum controlled-NOT gate.Comment: 11 pages, 11 figure
- …
