68 research outputs found
Recommended from our members
Interrogating the plasma proteome of repetitive head impact exposure and chronic traumatic encephalopathy
BackgroundExposure to repetitive head impacts (RHI) is associated with increased risk for chronic traumatic encephalopathy (CTE), a neurodegenerative tauopathy, and other neuropathological changes. Biological drivers of RHI-related neurodegeneration are not well understood. We interrogated the plasma proteome in aging adults with prior RHI compared to healthy controls (CTL) and individuals with Alzheimer's disease (AD), including a subset characterized neuropathologically at autopsy.MethodsProximity extension assay (Olink Explore®) quantified 2,779 plasma proteins in 22 RHI patients (all AD-biomarker negative), 39 biomarker-confirmed AD, and 44 CTL. A subset of participants went to autopsy (N = 16) allowing for comparisons of the antemortem plasma proteome between autopsy-confirmed CTE + (N = 7) and CTE- (N = 9). Differential abundance and co-expression network analyses identified plasma proteomic signatures of RHI, which were functionally annotated using gene ontology and cell type enrichment analysis. Nonparametric correlations examined plasma proteomic associations with orthogonally-measured plasma biomarkers, global cognitive function, and semi-quantitative ratings of neuropathology burden at autopsy.ResultsDifferential abundance analysis revealed 434 increased (vs. 6 decreased) proteins in RHI vs. CTL and 193 increased (vs. 14 decreased) in RHI vs. AD. Network analysis identified 9 protein co-expression modules (M1-M9), of which 7 were elevated in RHI compared to AD or CTL. Modules with increased abundance in RHI were enriched for mitochondrial/metabolic, cell division, and immunovascular (e.g., cell adhesion, TNF-signaling) processes. RHI-related modules exhibited strong and selective correlations with immunoassay-based plasma IL-6 in RHI cases, including the M2 TNF-signaling/cell adhesion module which harbored proteins that strongly tracked with cognitive function. RHI-related plasma protein signatures were similar in the subset of participants with autopsy-confirmed CTE, including immune and metabolic modules that positively correlated with medial temporal lobe tau and TDP-43 burden.ConclusionsMolecular pathways in plasma most consistently implicated in RHI were tied to immune response, mitochondrial function, and cell metabolism. RHI-related proteomic signatures tracked with antemortem cognitive severity and postmortem neuropathological burden, providing converging evidence for their role in disease progression. Differentially abundant proteins and co-expression modules in RHI may inform mechanisms linking RHI to increased dementia risk, thus guiding diagnostic biomarker and therapeutic development for at-risk populations
Recommended from our members
Clinical implications of head trauma in frontotemporal dementia and primary progressive aphasia
BackgroundTraumatic brain injury (TBI) and repetitive head impacts (RHI) have been linked to increased risk for multiple types of neurodegenerative disease, higher dementia risk, and earlier age of dementia symptom onset, suggesting transdiagnostic implications for later-life brain health. Frontotemporal dementia (FTD) and primary progressive aphasia (PPA) represent a spectrum of clinical phenotypes that are neuropathologically diverse. FTD/PPA diagnoses bring unique challenges due to complex cognitive and behavioral symptoms that disproportionately present as an early-onset dementia (before age 65). We performed a detailed characterization of lifetime head trauma exposure in individuals with FTD and PPA compared to healthy controls to examine frequency of lifetime TBI and RHI and associated clinical implications.MethodsWe studied 132 FTD/PPA (age 68.9 ± 8.1, 65% male) and 132 sex-matched healthy controls (HC; age 73.4 ± 7.6). We compared rates of prior TBI and RHI (contact/collision sports) between FTD/PPA and HC (chi-square, logistic regression, analysis of variance). Within FTD/PPA, we evaluated associations with age of symptom onset (analysis of variance). Within behavioral variant FTD, we evaluated associations with cognitive function and neuropsychiatric symptoms (linear regression controlling for age, sex, and years of education).ResultsYears of participation were greater in FTD/PPA than HC for any contact/collision sport (8.5 ± 6.7yrs vs. 5.3 ± 4.5yrs, p = .008) and for American football (6.2yrs ± 4.3yrs vs. 3.1 ± 2.4yrs; p = .003). Within FTD/PPA, there were dose-dependent associations with earlier age of symptom onset for TBI (0 TBI: 62.1 ± 8.1, 1 TBI: 59.9 ± 6.9, 2 + TBI: 57.3 ± 8.4; p = .03) and years of American football (0yrs: 62.2 ± 8.7, 1-4yrs: 59.7 ± 7.0, 5 + yrs: 55.9 ± 6.3; p = .009). Within bvFTD, those who played American football had worse memory (z-score: -2.4 ± 1.2 vs. -1.4 ± 1.6, p = .02, d = 1.1).ConclusionsLifetime head trauma may represent a preventable environmental risk factor for FTD/PPA. Dose-dependent exposure to TBI or RHI influences FTD/PPA symptom onset and memory function in bvFTD. Clinico-pathological studies are needed to better understand the neuropathological correlates linking RHI or TBI to FTD/PPA onset and symptoms
Sex-Related Differences in the Relationship Between β-Amyloid and Cognitive Trajectories in Older Adults
Objective: We aimed to test the hypothesis that elevated neocortical β-amyloid (Aβ), a hallmark feature of Alzheimer's disease (AD), predicts sex-specific cognitive trajectories in clinically normal older adults, with women showing greater risk of decline than men. Method: Florbetapir Aβ positron emission tomography (PET) was acquired in 149 clinically normal older adults (52% female, Mage = 74). Participants underwent cognitive testing at baseline and during annual follow-up visits over a timespan of up to 5.14 years. Mixed-effects regression models evaluated whether relations between baseline neocortical Standardized Uptake Value Ratio (SUVR) and composite scores of episodic memory, executive functioning, and processing speed were moderated by sex (male/female) and apolipoprotein E (APOE) status (ε4 carrier/noncarrier). Results: Higher baseline SUVR was associated with longitudinal decline in episodic memory in women (b = -1.32, p < .001) but not men (b = -0.30, p = .28). Female APOE ε4 carriers with elevated SUVR showed particularly precipitous declines in episodic memory (b = -4.33, p < .001) whereas other cognitive domains were spared. SUVR did not predict changes in executive functioning or processing speed, regardless of sex (ps >.63), though there was a main effect of SUVR on processing speed (b = 2.50, p = .003). Conclusions: Clinically normal women with elevated Aβ are more vulnerable to episodic memory decline than men. Understanding sex-related differences in AD, particularly in preclinical stages, is crucial for guiding precision medicine approaches to early detection and intervention. (PsycInfo Database Record (c) 2020 APA, all rights reserved)
Visual Performance Measures and Functional Implications in Healthy Participants: A Sports Concussion Perspective
Roles of physical activity and diet in cognitive aging: is more better?
Objective: To determine the synergistic effects of nutrition, specifically adherence to the Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diet, and physical activity on cognition and brain outcomes in a cross-sectional healthy aging cohort. Methods: A total of 132 adults (age range 52–91; Clinical Dementia Rating = 0) from the UCSF Brain Aging Project completed a 15-item MIND diet food frequency questionnaire and an 11-item self-report measure of weekly physical activity (Physical Activity Scale [PASE]). Cognitive outcomes included executive functioning, episodic memory, and language. Neuroimaging outcomes consisted of total grey matter volume and total white matter volume, adjusted for total intracranial volumes. All regression interaction models adjusted for age, sex, education, and a composite vascular burden score. Results: There was a significant interaction between PASE and MIND on executive functioning and total grey matter volume. Low levels of both related to disproportionately poorer cognitive and brain structural outcomes. Increasing levels of either, but not both, PASE or MIND related to better executive functioning and gray matter outcomes. For memory, language, and total white matter volume, the interaction between PASE and MIND showed the same directionality but did not reach statistical significance. Conclusions: Higher levels of physical activity associated with better executive functioning and gray matter volume, particularly when diet was poor. Similarly, higher levels of MIND diet adherence were associated with better brain and cognitive outcomes when physical activity was low. However, highest levels of physical activity and MIND diet together did not necessarily lead to disproportionately better cognitive and brain volume outcomes.</p
Combined Effects of Synaptic and Axonal Integrity on Longitudinal Gray Matter Atrophy in Cognitively Unimpaired Adults
BACKGROUND AND OBJECTIVES: Synaptic dysfunction and degeneration is a predominant feature of brain aging and synaptic preservation buffers against Alzheimer's disease (AD) protein-related brain atrophy. We tested whether cerebrospinal fluid (CSF) synaptic protein concentrations similarly moderate the effects of axonal injury, indexed via CSF neurofilament light [NfL], on brain atrophy in clinically normal adults. METHODS: Clinically normal older adults enrolled in the observational Hillblom Aging Network study at the UCSF Memory and Aging Center completed baseline lumbar puncture and longitudinal brain MRI (Mean scan [follow-up]=2.6 [3.7 years]). CSF was assayed for synaptic proteins (synaptotagmin-1, synaptosomal-associated protein 2 [SNAP-25], neurogranin, growth associated protein 43 [GAP-43]), axonal injury (NfL), and core AD biomarkers (ptau181/Aβ42 ratio; reflecting AD proteinopathy). Ten bilateral temporo-parietal gray matter ROIs shown to be sensitive to clinical AD were summed to generate a composite temporo-parietal ROI. Linear mixed-effects models tested statistical moderation of baseline synaptic proteins on baseline NfL-related temporo-parietal trajectories, controlling for ptau181/Aβ42 ratios. RESULTS: Forty-six clinically normal older adults (Mean age=70; 43% female) were included. Synaptic proteins exhibited small to medium correlations with NfL (r range: .10 to .36). Higher baseline NfL, but not ptau181/Aβ42 ratios, predicted steeper temporo-parietal atrophy (NfL x time: β=-0.08, p<.001; ptau181/Aβ42 x time: β=-0.02, p=.31). SNAP-25, neurogranin, and GAP-43 significantly moderated NfL-related atrophy trajectories (-0.07≤βs≥-0.06, ps<.05) such that NfL was associated with temporo-parietal atrophy at high (more abnormal) but not low (more normal) synaptic protein concentrations. At high NfL concentrations, atrophy trajectories were 1.5 to 4.5 times weaker when synaptic protein concentrations were low (β range: -0.21 to -0.07) than high (β range: -0.33 to -0.30). CONCLUSIONS: The association between baseline CSF NfL and longitudinal temporo-parietal atrophy is accelerated by synaptic dysfunction and buffered by synaptic integrity. Beyond AD proteins, concurrent examination of in vivo axonal and synaptic biomarkers may improve detection of neural alterations that precede overt structural changes in AD-sensitive brain regions
- …
