1,808 research outputs found

    Financial Analysis of “Corporation Bank” with Special Reference to Coimbatore, Tamilnadu

    Get PDF
    Financial analysis of an organization provides the clear view of its performance parameters, present as well as past performance. This analysis is important for the management and also for outsiders dealing with organization as this shows the way of functioning and the direction in which an organization is moving. It is helpful in assessing the corporate excellence, judging the credit worthiness, processing bond rating and assessing market risk. The main study is to find out the financial performance of the bank. The ratio analysis and interpretation can provide valuable insights into a bank’s performance. Keywords: 1. Financial Management: “Financial management is concerned with the efficient use of an important economic resource, namely, capital funds. 2. Financial Analysis: Financial analysis refers to an assessment of the viability, stability and profitability of a business sub-business or project. 3. Trend Analysis: Trend Analysis is the practice of collecting information and attempting to spot a pattern, or trend, in the information

    Nuclear reaction studies of unstable nuclei using relativistic mean field formalisms in conjunction with Glauber model

    Full text link
    We study nuclear reaction cross-sections for stable and unstable projectiles and targets within Glauber model, using densities obtained from various relativistic mean field formalisms. The calculated cross-sections are compared with the experimental data in some specific cases. We also evaluate the differential scattering cross-sections at several incident energies, and observe that the results found from various densities are similar at smaller scattering angles, whereas a systematic deviation is noticed at large angles. In general, these results agree fairly well with the experimental data.Comment: 9 pages, 7 figures, submitted to PR

    Applications of Signed Graphs to Portfolio Turnover Analysis

    Get PDF
    AbstractPortfolio turnover is an important area for portfolio managers and investors, since it significantly impacts returns through higher trading costs and taxes. Currently, methods for assessing the possibility of portfolio turnover are practically non-existent. Using the concept of signed graphs one can assess the stability of portfolios and thereby the likelihood of portfolio turnover. We demonstrate our method using empirical data from the Indian Stock Exchange and show that portfolios focusing on risk alone can result in higher portfolio turnover, causing misleading portfolio management

    Pressure-induced melting of the orbital polaron lattice in La1-xSrxMnO3

    Full text link
    We report on the pressure effects on the orbital polaron lattice in the lightly doped manganites La1xSrxMnO3\mathrm{La_{1-x}Sr_xMnO_{3}}, with x1/8x\sim 1/8. The dependence of the orbital polaron lattice on negativenegative chemical pressure is studied by substituting Pr for La in (La1yPry)7/8Sr1/8MnO3\mathrm{(La_{1-y}Pr_y)_{7/8}Sr_{1/8}MnO_{3}}. In addition, we have studied its hydrostatic pressure dependence in (La0.9Pr0.1)7/8Sr1/8MnO3\mathrm{(La_{0.9}Pr_{0.1})_{7/8}Sr_{1/8}MnO_{3}}. Our results strongly indicate that the hopping tt significantly contributes to the stabilization of the orbital polaron lattice and that the orbital polarons are ferromagnetic objects which get stabilized by local double exchange processes. The analysis of short range orbital correlations and the verification of the Grueneisen scaling by hard x-ray, specific heat and thermal expansion data reinforces our conclusions.Comment: 7 figure

    Isolation, characterization and evaluation of antioxidant activities of secondary metabolites producing actinomycetes of terrestrial origin

    Get PDF
    Background: Microbial secondary metabolites are important sources of natural compounds when compared to others with potential, beneficial therapeutic applications. There are chances of discovery of new Streptomyces species and new compounds from the respective genus. Due to ever and over increasing resistance of pathogenic bacteria to our current arsenal of antibiotics, a great need exists for the isolation and discovery of new antibiotics and other drug agents. Based on the above concept actinomycetes are mainly targeted for secondary metabolites production and evaluation of compounds therapeutically.Methods: Totally 15 pure isolates were obtained from two different soil samples by spread plate and quadrant streak techniques. Their colony and surface morphology were studied by morphological and biochemical characterization. Secondary metabolites were extracted by solvent extraction and the presence of bioactive compounds was detected by thin layer chromatography. The antioxidant potential was determined by Dot plot, DPPH and Phosphomolybdenum assay. The nature and the number of active compounds were identified by GC-MS analysis.Results: Among the 15 isolates, 10 isolates were found to have characteristic features of actinomycetes and 8 isolates were found to be fast growing actinomycetes. Among these 8 isolates, isolates of terrestrial origin were found to possess more bioactive compounds than those of marine origin and the four terrestrial isolates selected for evaluation of bioactive compounds and determination of antioxidant potential showed that the isolate TS 1010 had better and efficient secondary metabolite activity.Conclusions: Thus, from the above study it is seen that not only actinomycetes of marine origin, but terrestrial origin are also fast growers and possess better antioxidant and radical scavenging activity

    High-Performance Simulations of Coherent Synchrotron Radiation on Multicore GPU and CPU Platforms

    Get PDF
    Coherent synchrotron radiation (CSR) is an effect of self-interaction of an electron bunch as it traverses a curved path. It can cause a significant emittance degradation and microbunching. We present a new high-performance 2D, particle-in-cell code which uses massively parallel multicore GPU/GPU platforms to alleviate computational bottlenecks. The code formulates the CSR problem from first principles by using the retarded scalar and vector potentials to compute the self-interaction fields. The speedup due to the parallel implementation on GPU/CPU platforms exceeds three orders of magnitude, thereby bringing a previously intractable problem within reach. The accuracy of the code is verified against analytic 1D solutions (rigid bunch)

    NIAC Phase II Orbiting Rainbows: Future Space Imaging with Granular Systems

    Get PDF
    Inspired by the light scattering and focusing properties of distributed optical assemblies in Nature, such as rainbows and aerosols, and by recent laboratory successes in optical trapping and manipulation, we propose a unique combination of space optics and autonomous robotic system technology, to enable a new vision of space system architecture with applications to ultra-lightweight space optics and, ultimately, in-situ space system fabrication. Typically, the cost of an optical system is driven by the size and mass of the primary aperture. The ideal system is a cloud of spatially disordered dust-like objects that can be optically manipulated: it is highly reconfigurable, fault-tolerant, and allows very large aperture sizes at low cost. This new concept is based on recent understandings in the physics of optical manipulation of small particles in the laboratory and the engineering of distributed ensembles of spacecraft swarms to shape an orbiting cloud of micron-sized objects. In the same way that optical tweezers have revolutionized micro- and nano-manipulation of objects, our breakthrough concept will enable new large scale NASA mission applications and develop new technology in the areas of Astrophysical Imaging Systems and Remote Sensing because the cloud can operate as an adaptive optical imaging sensor. While achieving the feasibility of constructing one single aperture out of the cloud is the main topic of this work, it is clear that multiple orbiting aerosol lenses could also combine their power to synthesize a much larger aperture in space to enable challenging goals such as exo-planet detection. Furthermore, this effort could establish feasibility of key issues related to material properties, remote manipulation, and autonomy characteristics of cloud in orbit. There are several types of endeavors (science missions) that could be enabled by this type of approach, i.e. it can enable new astrophysical imaging systems, exo-planet search, large apertures allow for unprecedented high resolution to discern continents and important features of other planets, hyperspectral imaging, adaptive systems, spectroscopy imaging through limb, and stable optical systems from Lagrange-points. Furthermore, future micro-miniaturization might hold promise of a further extension of our dust aperture concept to other more exciting smart dust concepts with other associated capabilities. Our objective in Phase II was to experimentally and numerically investigate how to optically manipulate and maintain the shape of an orbiting cloud of dust-like matter so that it can function as an adaptable ultra-lightweight surface. Our solution is based on the aperture being an engineered granular medium, instead of a conventional monolithic aperture. This allows building of apertures at a reduced cost, enables extremely fault-tolerant apertures that cannot otherwise be made, and directly enables classes of missions for exoplanet detection based on Fourier spectroscopy with tight angular resolution and innovative radar systems for remote sensing. In this task, we have examined the advanced feasibility of a crosscutting concept that contributes new technological approaches for space imaging systems, autonomous systems, and space applications of optical manipulation. The proposed investigation has matured the concept that we started in Phase I to TRL 3, identifying technology gaps and candidate system architectures for the space-borne cloud as an aperture
    corecore