316 research outputs found

    Quasinormal modes for massless topological black holes

    Full text link
    An exact expression for the quasinormal modes of scalar perturbations on a massless topological black hole in four and higher dimensions is presented. The massive scalar field is nonminimally coupled to the curvature, and the horizon geometry is assumed to have a negative constant curvature.Comment: CECS style, 11 pages, no figures. References adde

    Conserved Charges for Even Dimensional Asymptotically AdS Gravity Theories

    Get PDF
    Mass and other conserved Noether charges are discussed for solutions of gravity theories with locally Anti-de Sitter asymptotics in 2n dimensions. The action is supplemented with a boundary term whose purpose is to guarantee that it reaches an extremum on the classical solutions, provided the spacetime is locally AdS at the boundary. It is also shown that if spacetime is locally AdS at spatial infinity, the conserved charges are finite and properly normalized without requiring subtraction of a reference background. In this approach, Noether charges associated to Lorentz and diffeomorphism invariance vanish identically for constant curvature spacetimes. The case of zero cosmological constant is obtained as a limit of AdS, where Λ\Lambda plays the role of a regulator.Comment: 8 pages, RevTeX, no figures, two columns, references added and minor typos corrected, final version for Phys. Rev.

    Conserved charges for gravity with locally AdS asymptotics

    Get PDF
    A new formula for the conserved charges in 3+1 gravity for spacetimes with local AdS asymptotic geometry is proposed. It is shown that requiring the action to have an extremum for this class of asymptotia sets the boundary term that must be added to the Lagrangian as the Euler density with a fixed weight factor. The resulting action gives rise to the mass and angular momentum as Noether charges associated to the asymptotic Killing vectors without requiring specification of a reference background in order to have a convergent expression. A consequence of this definition is that any negative constant curvature spacetime has vanishing Noether charges. These results remain valid in the limit of vanishing cosmological constant.Comment: 5 pages, 2 Columns, revtex. Last version for Phys. Rev. Let

    Mass, Angular Momentum and Thermodynamics in Four-Dimensional Kerr-AdS Black Holes

    Full text link
    In this paper, the connection between the Lorentz-covariant counterterms that regularize the four-dimensional AdS gravity action and topological invariants is explored. It is shown that demanding the spacetime to have a negative constant curvature in the asymptotic region permits the explicit construction of such series of boundary terms. The orthonormal frame is adapted to appropriately describe the boundary geometry and, as a result, the boundary term can be expressed as a functional of the boundary metric, extrinsic curvature and intrinsic curvature. This choice also allows to write down the background-independent Noether charges associated to asymptotic symmetries in standard tensorial formalism. The absence of the Gibbons-Hawking term is a consequence of an action principle based on a boundary condition different than Dirichlet on the metric. This argument makes plausible the idea of regarding this approach as an alternative regularization scheme for AdS gravity in all even dimensions, different than the standard counterterms prescription. As an illustration of the finiteness of the charges and the Euclidean action in this framework, the conserved quantities and black hole entropy for four-dimensional Kerr-AdS are computed.Comment: 15 pages,no figures,few references added,JHEP forma

    Black hole mass and angular momentum in 2+1 gravity

    Get PDF
    We propose a new definition for the mass and angular momentum of neutral or electrically charged black holes in 2+1 gravity with two Killing vectors. These finite conserved quantities, associated with the SL(2,R) invariance of the reduced mechanical system, are shown to be identical to the quasilocal conserved quantities for an improved gravitational action corresponding to mixed boundary conditions. They obey a general Smarr-like formula and, in all cases investigated, are consistent with the first law of black hole thermodynamics. Our framework is applied to the computation of the mass and angular momentum of black hole solutions to several field-theoretical models.Comment: 23 pages, 3 references added, to be published in Physical Review

    Determinant and Weyl anomaly of Dirac operator: a holographic derivation

    Get PDF
    We present a holographic formula relating functional determinants: the fermion determinant in the one-loop effective action of bulk spinors in an asymptotically locally AdS background, and the determinant of the two-point function of the dual operator at the conformal boundary. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk partition function to a subleading large-N contribution in the boundary partition function. We use this holographic picture to address questions in spectral theory and conformal geometry. As an instance, we compute the type-A Weyl anomaly and the determinant of the iterated Dirac operator on round spheres, express the latter in terms of Barnes' multiple gamma function and gain insight into a conjecture by B\"ar and Schopka.Comment: 11 pages; new comments and references added, typos correcte

    Black Hole Scan

    Full text link
    Gravitation theories selected by requiring that they have a unique anti-de Sitter vacuum with a fixed cosmological constant are studied. For a given dimension d, the Lagrangians under consideration are labeled by an integer k=1,2,...,[(d-1)/2]. Black holes for each d and k are found and are used to rank these theories. A minimum possible size for a localized electrically charged source is predicted in the whole set of theories, except General Relativity. It is found that the thermodynamic behavior falls into two classes: If d-2k=1, these solutions resemble the three dimensional black hole, otherwise, their behavior is similar to the Schwarzschild-AdS_4 geometry.Comment: Two columns, revtex, 15 pages, 5 figures, minor typos corrected, final version for Journa

    A Note on Conserved Charges of Asymptotically Flat and Anti-de Sitter Spaces in Arbitrary Dimensions

    Full text link
    The calculation of conserved charges of black holes is a rich problem, for which many methods are known. Until recently, there was some controversy on the proper definition of conserved charges in asymptotically anti-de Sitter (AdS) spaces in arbitrary dimensions. This paper provides a systematic and explicit Hamiltonian derivation of the energy and the angular momenta of both asymptotically flat and asymptotically AdS spacetimes in any dimension D bigger or equal to 4. This requires as a first step a precise determination of the asymptotic conditions of the metric and of its conjugate momentum. These conditions happen to be achieved in ellipsoidal coordinates adapted to the rotating solutions.The asymptotic symmetry algebra is found to be isomorphic either to the Poincare algebra or to the so(D-1, 2) algebra, as expected. In the asymptotically flat case, the boundary conditions involve a generalization of the parity conditions, introduced by Regge and Teitelboim, which are necessary to make the angular momenta finite. The charges are explicitly computed for Kerr and Kerr-AdS black holes for arbitrary D and they are shown to be in agreement with thermodynamical arguments.Comment: 27 pages; v2 : references added, minor corrections; v3 : replaced to match published version forthcoming in General Relativity and Gravitatio

    Quasinormal modes for the SdS black hole : an analytical approximation scheme

    Full text link
    Quasinormal modes for scalar field perturbations of a Schwarzschild-de Sitter (SdS) black hole are investigated. An analytical approximation is proposed for the problem. The quasinormal modes are evaluated for this approximate model in the limit when black hole mass is much smaller than the radius of curvature of the spacetime. The model mirrors some striking features observed in numerical studies of time behaviour of scalar perturbations of the SdS black hole. In particular, it shows the presence of two sets of modes relevant at two different time scales, proportional to the surface gravities of the black hole and cosmological horizons respectively. These quasinormal modes are not complete - another feature observed in numerical studies. Refinements of this model to yield more accurate quantitative agreement with numerical studies are discussed. Further investigations of this model are outlined, which would provide a valuable insight into time behaviour of perturbations in the SdS spacetime.Comment: 12 pages, revtex, refs added and discussion expanded, version to appear in Phys. Rev.

    A Wormhole at the core of an infinite cosmic string

    Get PDF
    We study a solution of Einstein's equations that describes a straight cosmic string with a variable angular deficit, starting with a 2Ď€2 \pi deficit at the core. We show that the coordinate singularity associated to this defect can be interpreted as a traversible wormhole lodging at the the core of the string. A negative energy density gradually decreases the angular deficit as the distance from the core increases, ending, at radial infinity, in a Minkowski spacetime. The negative energy density can be confined to a small transversal section of the string by gluing to it an exterior Gott's like solution, that freezes the angular deficit existing at the matching border. The equation of state of the string is such that any massive particle may stay at rest anywhere in this spacetime. In this sense this is 2+1 spacetime solution.Comment: 1 tex file and 5 eps files. To be Published in Nov. in Phys.Rev.
    • …
    corecore