832 research outputs found
Generalized Semimagic Squares for Digital Halftoning
Completing Aronov et al.'s study on zero-discrepancy matrices for digital
halftoning, we determine all (m, n, k, l) for which it is possible to put mn
consecutive integers on an m-by-n board (with wrap-around) so that each k-by-l
region holds the same sum. For one of the cases where this is impossible, we
give a heuristic method to find a matrix with small discrepancy.Comment: 6 pages, 6 figure
On a Possibility to Measure Thermoelectric Power in SNS Structures
Two dissimilar Josephson junctions, which are connected to a heater can act
as precise batteries. Because of the difference in thermoelectric power of
these batteries, circuit with two dissimilar batteries, under heat flow would have a net EMF around the zero-resistance
loop leading to a loop's magnetic flux oscillating in time. It is shown its
theoretical value is proportional to both the temperature difference as well as
the disparity in the thermoelectric powers of the two junctions.Comment: 5 page
High-frequency spin valve effect in ferromagnet-semiconductor-ferromagnet structure based on precession of injected spins
New mechanism of magnetoresistance, based on tunneling-emission of spin
polarized electrons from ferromagnets (FM) into semiconductors (S) and
precession of electron spin in the semiconductor layer under external magnetic
field, is described. The FM-S-FM structure is considered, which includes very
thin heavily doped (delta-doped) layers at FM-S interfaces. At certain
parameters the structure is highly sensitive at room-temperature to variations
of the field with frequencies up to 100 GHz. The current oscillates with the
field, and its relative amplitude is determined only by the spin polarizations
of FM-S junctions at relatively large bias voltage.Comment: 5 pages, 2 figures, (v2) new plot with a dependence of current J on
magnetic field H added in Fig.2 (top panel), minor amendments in the text;
(v3) minor typos corrected. To appear in Phys. Rev. Letter
Spin injection dependent metamagnetic transition
We define the metamagnetic phase transition of itinerant electrons controlled
by the spin injection mechanism. The current flow between a ferromagnetic metal
and a metamagnetic metal produces the non-equilibrium shift of chemical
potential for spin up and spin down electrons that acts as an effective
magnetic field driving the metamagnetic transition.Comment: 6 pages, 3 figure
Theory of thermal spin-charge coupling in electronic systems
The interplay between spin transport and thermoelectricity offers several
novel ways of generating, manipulating, and detecting nonequilibrium spin in a
wide range of materials. Here we formulate a phenomenological model in the
spirit of the standard model of electrical spin injection to describe the
electronic mechanism coupling charge, spin, and heat transport and employ the
model to analyze several different geometries containing ferromagnetic (F) and
nonmagnetic (N) regions: F, F/N, and F/N/F junctions which are subject to
thermal gradients. We present analytical formulas for the spin accumulation and
spin current profiles in those junctions that are valid for both tunnel and
transparent (as well as intermediate) contacts. For F/N junctions we calculate
the thermal spin injection efficiency and the spin accumulation induced
nonequilibrium thermopower. We find conditions for countering thermal spin
effects in the N region with electrical spin injection. This compensating
effect should be particularly useful for distinguishing electronic from other
mechanisms of spin injection by thermal gradients. For F/N/F junctions we
analyze the differences in the nonequilibrium thermopower (and chemical
potentials) for parallel and antiparallel orientations of the F magnetizations,
as evidence and a quantitative measure of the spin accumulation in N.
Furthermore, we study the Peltier and spin Peltier effects in F/N and F/N/F
junctions and present analytical formulas for the heat evolution at the
interfaces of isothermal junctions.Comment: to be published in PRB (in press), 19 pages, 19 figure
Subsampling in Smoothed Range Spaces
We consider smoothed versions of geometric range spaces, so an element of the
ground set (e.g. a point) can be contained in a range with a non-binary value
in . Similar notions have been considered for kernels; we extend them to
more general types of ranges. We then consider approximations of these range
spaces through -nets and -samples (aka
-approximations). We characterize when size bounds for
-samples on kernels can be extended to these more general
smoothed range spaces. We also describe new generalizations for -nets to these range spaces and show when results from binary range spaces can
carry over to these smoothed ones.Comment: This is the full version of the paper which appeared in ALT 2015. 16
pages, 3 figures. In Algorithmic Learning Theory, pp. 224-238. Springer
International Publishing, 201
Finding Pairwise Intersections Inside a Query Range
We study the following problem: preprocess a set O of objects into a data
structure that allows us to efficiently report all pairs of objects from O that
intersect inside an axis-aligned query range Q. We present data structures of
size and with query time
time, where k is the number of reported pairs, for two classes of objects in
the plane: axis-aligned rectangles and objects with small union complexity. For
the 3-dimensional case where the objects and the query range are axis-aligned
boxes in R^3, we present a data structures of size and query time . When the objects and
query are fat, we obtain query time using storage
Restrictions on modeling spin injection by resistor networks
Because of the technical difficulties of solving spin transport equations in
inhomogeneous systems, different resistor networks are widely applied for
modeling spin transport. By comparing an analytical solution for spin injection
across a ferromagnet - paramagnet junction with a resistor model approach, its
essential limitations stemming from inhomogeneous spin populations are
clarified.Comment: To be published in a special issue of Semicond. Sci. Technol., Guest
editor Prof. G. Landweh
Spin and orbital effects in a 2D electron gas in a random magnetic field
Using the method of superbosonization we consider a model of a random
magnetic field (RMF) acting on both orbital motion and spin of electrons in two
dimensions. The method is based on exact integration over one particle degrees
of freedom and reduction of the problem to a functional integral over
supermatrices . We consider a general case when
both the direction of the RMF and the g-factor of the Zeeman splitting are
arbitrary. Integrating out fast variations of we come to a standard
collisional unitary non-linear -model. The collision term consists of
orbital, spin and effective spin-orbital parts. For a particular problem of a
fixed direction of RMF, we show that additional soft excitations identified
with spin modes should appear. Considering % -correlated weak RMF and
putting g=2 we find the transport time . This time is 2 times
smaller than that for spinless particles.Comment: 9 pages, no figure
Orthogonal Range Reporting and Rectangle Stabbing for Fat Rectangles
In this paper we study two geometric data structure problems in the special
case when input objects or queries are fat rectangles. We show that in this
case a significant improvement compared to the general case can be achieved.
We describe data structures that answer two- and three-dimensional orthogonal
range reporting queries in the case when the query range is a \emph{fat}
rectangle. Our two-dimensional data structure uses words and supports
queries in time, where is the number of points in the
data structure, is the size of the universe and is the number of points
in the query range. Our three-dimensional data structure needs
words of space and answers queries in time. We also consider the rectangle stabbing problem on a set of
three-dimensional fat rectangles. Our data structure uses space and
answers stabbing queries in time.Comment: extended version of a WADS'19 pape
- …
