2,865 research outputs found
Empires and Percolation: Stochastic Merging of Adjacent Regions
We introduce a stochastic model in which adjacent planar regions merge
stochastically at some rate , and observe analogies with the
well-studied topics of mean-field coagulation and of bond percolation. Do
infinite regions appear in finite time? We give a simple condition on
for this {\em hegemony} property to hold, and another simple condition for it
to not hold, but there is a large gap between these conditions, which includes
the case . For this case, a non-rigorous analytic
argument and simulations suggest hegemony.Comment: 13 page
Critical Enhancement of the In-medium Nucleon-Nucleon Cross Section at low Temperatures
The in-medium nucleon-nucleon cross section is calculated starting from the
thermodynamic T-matrix at finite temperatures. The corresponding
Bethe-Salpeter-equation is solved using a separable representation of the Paris
nucleon-nucleon-potential. The energy-dependent in-medium N-N cross section at
a given density shows a strong temperature dependence. Especially at low
temperatures and low total momenta, the in-medium cross section is strongly
modified by in-medium effects. In particular, with decreasing temperature an
enhancement near the Fermi energy is observed. This enhancement can be
discussed as a precursor of the superfluid phase transition in nuclear matter.Comment: 10 pages with 4 figures (available on request from the authors),
MPG-VT-UR 34/94 accepted for publication in Phys. Rev.
Spontaneous breaking of rotational symmetry in superconductors
We show that homogeneous superconductors with broken spin/isospin symmetry
lower their energy via a transition to a novel superconducting state where the
Fermi-surfaces are deformed to a quasi-ellipsoidal form at zero total momentum
of Cooper pairs. In this state, the gain in the condensation energy of the
pairs dominates over the loss in the kinetic energy caused by the lowest order
(quadrupole) deformation of Fermi-surfaces from the spherically symmetric form.
There are two energy minima in general, corresponding to the deformations of
the Fermi-spheres into either prolate or oblate forms. The phase transition
from spherically symmetric state to the superconducting state with broken
rotational symmetry is of the first order.Comment: 5 pages, including 3 figures, published versio
Spatially inhomogeneous condensate in asymmetric nuclear matter
We study the isospin singlet pairing in asymmetric nuclear matter with
nonzero total momentum of the condensate Cooper pairs. The quasiparticle
excitation spectrum is fourfold split compared to the usual BCS spectrum of the
symmetric, homogeneous matter. A twofold splitting of the spectrum into
separate branches is due to the finite momentum of the condensate, the isospin
asymmetry, or the finite quasiparticle lifetime. The coupling of the isospin
singlet and triplet paired states leads to further twofold splitting of each of
these branches. We solve the gap equation numerically in the isospin singlet
channel in the case where the pairing in the isospin triplet channel is
neglected and find nontrivial solutions with finite total momentum of the
pairs. The corresponding phase assumes a periodic spatial structure which
carries a isospin density wave at constant total number of particles. The phase
transition from the BCS to the inhomogeneous superconducting phase is found to
be first order and occurs when the density asymmetry is increased above 0.25.
The transition from the inhomogeneous superconducting to the unpaired normal
state is second order. The maximal values of the critical total momentum (in
units of the Fermi momentum) and the critical density asymmetry at which
condensate disappears are and . The possible
spatial forms of the ground state of the inhomogeneous superconducting phase
are briefly discussed.Comment: 13 pages, including 3 figues, uses RevTeX; minor corrections, PRC in
pres
Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQ1 in the NH terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F to A) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (LL to AA) caused an increase in cell surface distribution only at higher levels of expression, but the overall cell surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes
Two-body correlation functions in nuclear matter with condensate
The density, spin and isospin correlation functions in nuclear matter with a
neutron-proton () condensate are calculated to study the possible
signatures of the BEC-BCS crossover in the low-density region. It is shown that
the criterion of the crossover (Phys. Rev. Lett. {\bf 95}, 090402 (2005)),
consisting in the change of the sign of the density correlation function at low
momentum transfer, fails to describe correctly the density-driven BEC-BCS
transition at finite isospin asymmetry or finite temperature. As an unambiguous
signature of the BEC-BCS transition, there can be used the presence (BCS
regime) or absence (BEC regime) of the singularity in the momentum distribution
of the quasiparticle density of states.Comment: Prepared with RevTeX4, 5p., 4 figure
Differential flow in heavy-ion collisions at balance energies
A strong differential transverse collective flow is predicted for the first
time to occur in heavy-ion collisions at balance energies. We also give a novel
explanation for the disappearance of the total transverse collective flow at
the balance energies. It is further shown that the differential flow especially
at high transverse momenta is a useful microscope capable of resolving the
balance energy's dual sensitivity to both the nuclear equation of state and
in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres
Cocoa Butter Saturated with Supercritical Carbon Dioxide: Measurements and Modelling of Solubility, Volumetric Expansion, Density and Viscosity
International audienceThe use of supercritical carbon dioxide technology for lipid processing has recently developed at the expense of traditional processes. For designing new processes the knowledge of thermophysical properties is a prerequisite. This work is focused on the characterization of physical and thermodynamic properties of CO2-cocoa butter (CB) saturated mixture. Measurements of density, volumetric expansion, viscosity and CO2 solubility were carried out on CB-rich phase at 313 and 353 K and pressures up to 40 MPa. The experimental techniques have previously been compared and validated. Density measurements of CB and CB saturated with CO2, were performed using the vibrating tube technology at pressures ranging from 0.1 to 25 MPa. Experimental values correlated well with the modified Tait equation. CO2 solubility measurements were coupled to those of density in the same pressures ranges. At 25 MPa, the solubility of CO2 is 31.4 % and 28.7 % at 313 and 353 K. Phase behaviour was investigated using a view cell in order to follow the expansion of the CB-rich phase with the rise in pressure. Volumetric expansion up to 47 % was measured and correlated to the CO2 solubility. Phase inversion was observed at 313 K and 40 MPa. Lastly, we developed an innovative falling ball viscometer for high pressure measurements. Viscosity measurements were carried out up to 25 MPa showing a viscosity reduction up to 90 % upon CO2 dissolution. These results were correlated with two empirical models. A new model here presented, was favourably compared with the Grunberg and Nissan model. All the experimental results are consistent with the available literature data for the CB-CO2 mixture and other fat systems. This work is a new contribution to the characterization of physical and thermodynamic behaviour of fats in contact with CO2 which is necessary to design supercritical fluid processes for fats processing
Four-particle condensate in strongly coupled fermion systems
Four-particle correlations in fermion systems at finite temperatures are
investigated with special attention to the formation of a condensate. Instead
of the instability of the normal state with respect to the onset of pairing
described by the Gorkov equation, a new equation is obtained which describes
the onset of quartetting. Within a model calculation for symmetric nuclear
matter, we find that below a critical density, the four-particle condensation
(alpha-like quartetting) is favored over deuteron condensation (triplet
pairing). This pairing-quartetting competition is expected to be a general
feature of interacting fermion systems, such as the excition-biexciton system
in excited semiconductors. Possible experimental consequences are pointed out.Comment: LaTeX, 11 pages, 2 figures, uses psfig.sty (included), to be
published in Phys. Rev. Lett., tentatively scheduled for 13 April 1998
(Volume 80, Number 15
Towards a fully self-consistent spectral function of the nucleon in nuclear matter
We present a calculation of nuclear matter which goes beyond the usual
quasi-particle approximation in that it includes part of the off-shell
dependence of the self-energy in the self-consistent solution of the
single-particle spectrum. The spectral function is separated in contributions
for energies above and below the chemical potential. For holes we approximate
the spectral function for energies below the chemical potential by a
-function at the quasi-particle peak and retain the standard form for
energies above the chemical potential. For particles a similar procedure is
followed. The approximated spectral function is consistently used at all levels
of the calculation. Results for a model calculation are presented, the main
conclusion is that although several observables are affected by the inclusion
of the continuum contributions the physical consistency of the model does not
improve with the improved self-consistency of the solution method. This in
contrast to expectations based on the crucial role of self-consistency in the
proofs of conservation laws.Comment: 26 pages Revtex with 4 figures, submitted to Phys. Rev.
- …
