54 research outputs found

    Hysterectomy in uterine fibroids: an institutional survey pre and post COVID lockdown

    Get PDF
    Background: The COVID-19 pandemic had a tremendous effect on surgical practice and surgical outcomes, especially in Gynaecology which had led to an increase in operative interferences like hysterectomies, which is one of the most frequently performed surgical procedures for uterine leiomyomas. Aim of this study was to determine the impact of covid lockdown on hysterectomies performed on AUB–L in perimenopausal and post-menopausal women based on clinical, radiological, and operative aspects. Methods: A retrospective study on perimenopausal and post-menopausal women who underwent hysterectomy for AUB-L was compared based on their clinical, radiological, and operative findings in the pre COVID period (April 2019-March 2020) and post COVID lockdown period of one year (July 2021-June 2022), at Department of Obstetrics and Gynaecology, SVS Hospital, Telangana. Results: The post-covid group has a significant increase in the severity of clinical symptoms such as menorrhagia and dysmenorrhea (VMSS-GRADE 2). Radiological findings (US AND MRI)-The size (>5cms) and number (>2) of fibroids increased significantly in post COVID group. The operative duration (1-3hrs), intraoperative blood loss (150-300ml), need for blood transfusion (>24%), postoperative pain (VAS pain score 5), and mean hospital stay (72-120hrs) were significantly increased in the post-COVID group as compared to pre COVID group attributable to delay in seeking medical advice due to COVID-19 lockdown. Conclusions: This study clearly states that the impact of the COVID-19 lockdown was significant in worsening clinical features, increasing the size and number of fibroids which in turn increased the number of hysterectomies, operative time and complications

    Coenzyme Q10 levels are low and may be associated with the inflammatory cascade in septic shock

    Get PDF
    Mitochondrial dysfunction is associated with increased mortality in septic shock. Coenzyme Q10 (CoQ10) is a key cofactor in the mitochondrial respiratory chain, but whether CoQ10 is depleted in septic shock remains unknown. Moreover, statin therapy may decrease CoQ10 levels, but whether this occurs acutely remains unknown. We measured CoQ10 levels in septic shock patients enrolled in a randomized trial of simvastatin versus placebo. We conducted a post hoc analysis of a prospective, randomized trial of simvastatin versus placebo in patients with septic shock (ClinicalTrials.gov ID: NCT00676897). Adult patients with suspected or confirmed infection and the need for vasopressor support were included in the initial trial. For the current analysis, blood specimens were analyzed for plasma CoQ10 and low-density lipoprotein (LDL) levels. The relationship between CoQ10 levels and inflammatory and vascular endothelial biomarkers was assessed using either the Pearson or Spearman correlation coefficient. We analyzed 28 samples from 14 patients. CoQ10 levels were low, with a median of 0.49 (interquartile range 0.26 to 0.62) compared to levels in healthy control patients (CoQ10 = 0.95 μmol/L ± 0.29; P < 0.0001). Statin therapy had no effect on plasma CoQ10 levels over time (P = 0.13). There was a statistically significant relationship between plasma CoQ10 levels and levels of vascular cell adhesion molecule (VCAM) (r2 = 0.2; P = 0.008), TNF-α (r2 = 0.28; P = 0.004), IL-8 (r2 = 0.21; P = 0.015), IL-10 (r2 = 0.18; P = 0.025), E-selectin (r2 = 0.17; P = -0.03), IL-1ra (r2 = 0.21; P = 0.014), IL-6 (r2 = 0.17; P = 0.029) and IL-2 (r2 = 0.23; P = 0.009). After adjusting for LDL levels, there was a statistically significant inverse relationship between plasma CoQ10 levels and levels of VCAM (r2 = 0.24; P = 0.01) (Figure 3) and IL-10 (r2 = 0.24; P = 0.02). CoQ10 levels are significantly lower in septic shock patients than in healthy controls. CoQ10 is negatively associated with vascular endothelial markers and inflammatory molecules, though this association diminishes after adjusting for LDL levels

    Use of fractional exhaled nitric oxide to guide the treatment of asthma an official american thoracic society clinical practice guideline

    Get PDF
    Background: The fractional exhaled nitric oxide (FENO) test is a point-of-care test that is used in the assessment of asthma.Objective: To provide evidence-based clinical guidance on whether FENO testing is indicated to optimize asthma treatment in patients with asthma in whom treatment is being considered.Methods: An international, multidisciplinary panel of experts was convened to form a consensus document regarding a single question relevant to the use of FENO. The question was selected from three potential questions based on the greatest perceived impact on clinical practice and the unmet need for evidencebased answers related to this question. The panel performed systematic reviews of published randomized controlled trials between 2004 and 2019 and followed the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) evidence-to-decision framework to develop recommendations. All panel members evaluated and approved the recommendations.Main Results: After considering the overall low quality of the evidence, the panel made a conditional recommendation for FENO-based care. In patients with asthma in whom treatment is being considered, we suggest that FENO is beneficial and should be used in addition to usual care. This judgment is based on a balance of effects that probably favors the intervention; the moderate costs and availability of resources, which probably favors the intervention; and the perceived acceptability and feasibility of the intervention in daily practice.Conclusions: Clinicians should consider this recommendation to measure FENO in patients with asthma in whom treatment is being considered based on current best available evidence. </p

    A Novel Structural Assessment Technique to Prevent Damaged FRP-Wrapped Concrete Bridge Piers from Collapse

    Get PDF
    Repairing deteriorated concrete bridge piers using externally wrapped fiber reinforced polymer (FRP) composites have been proven as an effective approach. This technique has also been applied to low-rise building structures. Failures in FRP-wrapped concrete structures may occur by flexural failures of critical sections or by debonding of FRP plate from the concrete substrate. Debonding in the FRP/adhesive/concrete interface region may cause a significant decrease in member capacity leading to a premature failure of the system. In this chapter, a novel structural assessment technique aiming at inspecting the near-surface FRP debonding and concrete cracking of damaged FRP-wrapped concrete bridge piers to prevent the structures from collapse is presented. In the first part of this chapter, failure mechanisms of FRP-wrapped concrete systems are briefly discussed. The second part of this chapter introduces a novel structural assessment technique in which far-field airborne radar is applied. In this development, emphasis is placed on inspection of debonding in glass FRP (GFRP)-wrapped concrete cylinders, while the technique is also applicable to beams and slabs with bonded GFRP composites. Physical radar measurements on laboratory specimens with structural damages were conducted and used for validating the technique. Processed experimental measurements have shown promising results for the future application of the technique. Finally, research findings and issues are summarized.National Science Foundation (U.S.) (Grant CMS-0324607)Lincoln Laborator

    Pain patterns and descriptions in patients with radicular pain: Does the pain necessarily follow a specific dermatome?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is commonly stated that nerve root pain should be expected to follow a specific dermatome and that this information is useful to make the diagnosis of radiculopathy. There is little evidence in the literature that confirms or denies this statement. The purpose of this study is to describe and discuss the diagnostic utility of the distribution of pain in patients with cervical and lumbar radicular pain.</p> <p>Methods</p> <p>Pain drawings and descriptions were assessed in consecutive patients diagnosed with cervical or lumbar nerve root pain. These findings were compared with accepted dermatome maps to determine whether they tended to follow along the involved nerve root's dermatome.</p> <p>Results</p> <p>Two hundred twenty-six nerve roots in 169 patients were assessed. Overall, pain related to cervical nerve roots was non-dermatomal in over two-thirds (69.7%) of cases. In the lumbar spine, the pain was non-dermatomal in just under two-thirds (64.1%) of cases. The majority of nerve root levels involved non-dermatomal pain patterns except C4 (60.0% dermatomal) and S1 (64.9% dermatomal). The sensitivity (SE) and specificity (SP) for dermatomal pattern of pain are low for all nerve root levels with the exception of the C4 level (Se 0.60, Sp 0.72) and S1 level (Se 0.65, Sp 0.80), although in the case of the C4 level, the number of subjects was small (n = 5).</p> <p>Conclusion</p> <p>In most cases nerve root pain should not be expected to follow along a specific dermatome, and a dermatomal distribution of pain is not a useful historical factor in the diagnosis of radicular pain. The possible exception to this is the S1 nerve root, in which the pain does commonly follow the S1 dermatome.</p

    Eosinophils in glioblastoma biology

    Get PDF
    Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review

    The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: an overview of Network organization, procedures and interventions

    Get PDF
    Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here we describe the Precision Interventions for Severe and/or Exacerbation Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the U.S. The PrecISE Network was designed to conduct phase II/proof of concept clinical trials of precision interventions in the severe asthma population, and is supported by the National Heart Lung and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the Network will evaluate up to six interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for of severe asthma
    corecore