221 research outputs found

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    Quantum Particles as Conceptual Entities: A Possible Explanatory Framework for Quantum Theory

    Full text link
    We put forward a possible new interpretation and explanatory framework for quantum theory. The basic hypothesis underlying this new framework is that quantum particles are conceptual entities. More concretely, we propose that quantum particles interact with ordinary matter, nuclei, atoms, molecules, macroscopic material entities, measuring apparatuses, ..., in a similar way to how human concepts interact with memory structures, human minds or artificial memories. We analyze the most characteristic aspects of quantum theory, i.e. entanglement and non-locality, interference and superposition, identity and individuality in the light of this new interpretation, and we put forward a specific explanation and understanding of these aspects. The basic hypothesis of our framework gives rise in a natural way to a Heisenberg uncertainty principle which introduces an understanding of the general situation of 'the one and the many' in quantum physics. A specific view on macro and micro different from the common one follows from the basic hypothesis and leads to an analysis of Schrodinger's Cat paradox and the measurement problem different from the existing ones. We reflect about the influence of this new quantum interpretation and explanatory framework on the global nature and evolutionary aspects of the world and human worldviews, and point out potential explanations for specific situations, such as the generation problem in particle physics, the confinement of quarks and the existence of dark matter.Comment: 45 pages, 10 figure

    From Data to Phenomena: A Kantian Stance

    Get PDF
    This paper investigates some metaphysical and epistemological assumptions behind Bogen and Woodward's data-to-phenomena inferences. I raise a series of points and suggest an alternative possible Kantian stance about data-to-phenomena inferences. I clarify the nature of the suggested Kantian stance by contrasting it with McAllister's view about phenomena as patterns in data sets

    A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    Get PDF
    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John Fisher College, features two independent projects that take advantage of the biology of the nematode Caenorhabditis elegans, a premier yet simple model organism. First, students perform a miniature epigenetic screen for novel phenotypes using RNA interference. The results of this screen combined with literature research direct students toward a singe gene that they attempt to subclone in the second project. The biology of the chosen gene/protein also becomes an individualized focal point with respect to the content of the laboratory. Progress toward course goals is evaluated using written, oral, and group-produced assignments, including a concept map. Pre- and postassessment indicates a significant increase in the understanding of broad concepts in cell biological research

    Explaining Models: Theoretical and Phenomenological Models and Their Role for the First Explanation of the Hydrogen Spectrum

    Get PDF
    Wilholt T. Explaining Models: Theoretical and Phenomenological Models and Their Role for the First Explanation of the Hydrogen Spectrum. Foundations of Chemistry. 2005;7(2):149-169.Traditional nomological accounts of scientific explanation have assumed that a good scientific explanation consists in the derivation of the explanandum's description from theory (plus antecedent conditions). But in more recent philosophy of science the adequacy of this approach has been challenged, because the relation between theory and phenomena in actual scientific practice turns out to be more intricate. This critique is here examined for an explanatory paradigm that was groundbreaking for 20th century physics and chemistry (and their interrelation): Bohr's first model of the atom and its explanatory relevance for the spectrum of hydrogen. First, the model itself is analysed with respect to the principles and assumptions that enter into its premises. Thereafter, the origin of the model's explanandum is investigated. It can be shown that the explained "phenomenon" is itself the product of a host of modelling accomplishments that stem from an experimental tradition related to 19th century chemistry, viz. spectroscopy. The relation between theory and phenomenon is thus mediated in a twofold way: by (Bohr's) theoretical model and a phenomenological model from spectroscopy. In the final section of the paper an account is outlined that nevertheless permits us to acknowledge this important physico-chemical achievement as a case of (nomological) explanation

    Defining a General Structure of Four Inferential Processes by Means of Four Pairs of Choices Concerning Two Basic Dichotomies

    Get PDF
    In previous papers I have characterized four ways of reasoning in Peirce’s philosophy, and four ways of reasoning in Computability Theory. I have established their correspondence on the basis of the four pairs of choices regarding two dichotomies, respectively the dichotomy between two kinds of Mathematics and the dichotomy between two kinds of Logic. In the present paper I introduce four principles of reasoning in theoretical Physics and I interpret also them by means of the four pairs of choices regarding the above two dichotomies. I show that there exists a meaningful correspondence among the previous three fourfold sets of elements. This convergence of the characteristic ways of reasoning within three very different fields of research - Peirce’s philosophy, Computability theory and physical theories - suggests that there exists a general-purpose structure of four ways of reasoning. This structure is recognized as applied by Mendeleev when he built his periodic table. Moreover, it is shown that a chemist-, applies all the above ways of reasoning at the same time. Peirce’s professional practice as a chemist applying at the same time this variety of reasoning explains his stubborn research into the variety of the possible inferences
    • 

    corecore