1,613 research outputs found
Results from the CASTLES Survey of Gravitational Lenses
We show that most gravitational lenses lie on the passively evolving
fundamental plane for early-type galaxies. For burst star formation models (1
Gyr of star formation, then quiescence) in low Omega_0 cosmologies, the stellar
populations of the lens galaxies must have formed at z_f > 2. Typical lens
galaxies contain modest amounts of patchy extinction, with a median
differential extinction for the optical (radio) selected lenses of E(B-V) =
0.04 (0.07) mag. The dust can be used to determine both extinction laws and
lens redshifts. For example, the z_l=0.96 elliptical lens in MG0414+0534 has an
R_V=1.7 +/- 0.1 mean extinction law. Arc and ring images of the quasar and AGN
source host galaxies are commonly seen in NICMOS H band observations. The hosts
are typically blue, L < L_* galaxies.Comment: 12 pages, 10 figures, from Proceedings of the 9th Annual Astrophysics
Conference in Maryland, After the Dark Ages: When Galaxies Were Youn
A Search for Planetary Nebulae With the SDSS: the outer regions of M31
We have developed a method to identify planetary nebula (PN) candidates in
imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the
SDSS' five-band sampling of emission lines in PN spectra, which results in a
color signature distinct from that of other sources. Selection criteria based
on this signature can be applied to nearby galaxies in which PNe appear as
point sources. We applied these criteria to the whole area of M31 as scanned by
the SDSS, selecting 167 PN candidates that are located in the outer regions of
M31. The spectra of 80 selected candidates were then observed with the 2.2m
telescope at Calar Alto Observatory. These observations and cross-checks with
literature data show that our method has a selection rate efficiency of about
90%, but the efficiency is different for the different groups of PNe
candidates.
In the outer regions of M31, PNe trace different well-known morphological
features like the Northern Spur, the NGC205 Loop, the G1 Clump, etc. In
general, the distribution of PNe in the outer region 8<R<20 kpc along the minor
axis shows the "extended disk" - a rotationally supported low surface
brightness structure with an exponential scale length of 3.21+/-0.14 kpc and a
total mass of ~10^10 M_{\sun}, which is equivalent to the mass of M33. We
report the discovery of three PN candidates with projected locations in the
center of Andromeda NE, a very low surface brightness giant stellar structure
in the outer halo of M31. Two of the PNe were spectroscopically confirmed as
genuine PNe. These two PNe are located at projected distances along the major
axis of ~48 Kpc and ~41 Kpc from the center of M31 and are the most distant PNe
in M31 found up to now.Comment: 58 pages, 17 figures, 2 tables, Accepted to Astronomical Journa
The Tully-Fisher Relation of Barred Galaxies
We present new data exploring the scaling relations, such as the Tully-Fisher
relation (TFR), of bright barred and unbarred galaxies. A primary motivation
for this study is to establish whether barredness correlates with, and is a
consequence of, virial properties of galaxies. Various lines of evidence
suggest that dark matter is dominant in disks of bright unbarred galaxies at
2.2 disk scale lengths, the point of peak rotation for a pure exponential disk.
We test the hypothesis that the TF plane of barred high surface brightness
galaxies is offset from the mean TFR of unbarred galaxies, as might be expected
if barred galaxies are ``maximal'' in their inner parts. We use existing and
new TF data to search for basic structural differences between barred and
unbarred galaxies. Our new data consist of 2-dimensional Halpha velocity fields
derived from SparsePak integral field spectroscopy (IFS) and V,I-band CCD
images collected at the WIYN Observatory for 14 strongly barred galaxies. We
use WIYN/SparsePak (2-D) velocity fields to show that long-slit (1-D) spectra
yield reliable circular speed measurements at or beyond 2.2 disk scale lengths,
far from any influence of the bar. This enables us to consider line width
measurements from extensive TF surveys which include barred and nonbarred disks
and derive detailed scaling relation comparisons. We find that for a given
luminosity, barred and unbarred galaxies have comparable structural and
dynamical parameters, such as peak velocities, scale lengths, or colors. In
particular, the location of a galaxy in the TF plane is independent of
barredness. In a global dynamical sense, barred and unbarred galaxies behave
similarly and are likely to have, on average, comparable fractions of luminous
and dark matter at a given radius. (abridged)Comment: Accepted for publication in the ApJ (September 1, 2003 issue, v594).
Appendix figures with I-band image and superimposed 2-D velocity field plus
rotation curves must be downloaded separately (due to size constraints) from
http://www.astro.ubc.ca/people/courteau/public/courteau03_TFbars.ps.g
The Infrared Einstein Ring in the Gravitational Lens MG1131+0456 and the Death of the Dusty Lens Hypothesis
We have obtained and modeled new NICMOS images of the lens system
MG1131+0456, which show that its lens galaxy is an H=18.6 mag, transparent,
early-type galaxy at a redshift of about z_l = 0.85; it has a major axis
effective radius R_e=0.68+/-0.05 arcsec, projected axis ratio b/a=0.77+/-0.02,
and major axis PA=60+/-2 degrees. The lens is the brightest member of a group
of seven galaxies with similar R-I and I-H colors, and the two closest group
members produce sufficient tidal perturbations to explain the ring morphology.
The host galaxy of the MG1131+0456 source is a z_s > 2 ERO (``extremely red
object'') which is lensed into optical and infrared rings of dramatically
different morphologies. These differences imply a strongly wavelength-dependent
source morphology that could be explained by embedding the host in a larger,
dusty disk. At 1.6 micron (H), the ring is spectacularly luminous, with a total
observed flux of H=17.4 mag and a de-magnified flux of 19.3 mag, corresponding
to a 1-2L_* galaxy at the probable source redshift of z_s > 2. Thus, it is
primarily the stellar emission of the radio source host galaxy that produces
the overall colors of two of the reddest radio lenses, MG1131+0456 and
B~1938+666, aided by the suppression of optical AGN emission by dust in the
source galaxy. The dusty lens hypothesis -- that many massive early-type
galaxies with 0.2 < z_l < 1.0 have large, uniform dust opacities -- is ruled
out.Comment: 27 pages, 8 COLOR figures, submitted to ApJ. Black and white version
available at http://cfa-www.harvard.edu/castle
No Hubble Bubble in the Local Universe
Zehavi et al. (1998) have suggested that the Hubble flow within 70/h Mpc may
be accelerated by the existence of a void centered on the Local Group. Its
underdensity would be ~20 %, which would result in a local Hubble distortion of
about 6.5 %. We have combined the peculiar velocity data of two samples of
clusters of galaxies, SCI and SCII, to investigate the amplitude of Hubble
distortions to 200/h Mpc. Our results are not supportive of that conclusion.
The amplitude of a possible distortion in the Hubble flow within 70/h Mpc in
the SCI+SCII merged data is 0.010\pm0.022. The largest, and still quite
marginal, geocentric deviation from smooth Hubble flow consistent with that
data set is a shell with (Delta H)/H =0.027\pm0.023, centered at hd = 101 Mpc
and extending over some 30/h Mpc. Our results are thus consistent with a Hubble
flow that, on distances in excess of about 50/h Mpc, is remarkably smooth.Comment: 11 pages, 1 tables, 1 figure; uses AAS LaTex; to appear in ApJ Nov 9
Improved photometry of SDSS crowded field images: Structure and dark matter content in the dwarf spheroidal galaxy Leo I
We explore how well crowded field point-source photometry can be accomplished
with SDSS data: We present a photometric pipeline based on DoPhot, and tuned
for analyzing crowded-field images from the SDSS. Using Monte Carlo simulations
we show that the completeness of source extraction is above 80% to i < 21 (AB)
and a stellar surface density of about 200 sq.amin. Hence, a specialized data
pipeline can efficiently be used for e.g. nearby resolved galaxies in SDSS
images, where the standard SDSS photometric package Photo, when applied in
normal survey mode, gives poor results. We apply our pipeline to an area of
about 3.55sq.deg. around the dwarf spheroidal galaxy (dSph) Leo I, and
construct a high S/N star-count map of Leo I via an optimized filter in
color-magnitude space (g,r,i). Although the radial surface-density profile of
the dwarf deviates from the best fit empirical King model towards outer radii,
we find no evidence for tidal debris out to a stellar surface-density of
4*10^(-3) of the central value. We determine the total luminosity of Leo I, and
model its mass using the spherical and isotropic Jeans equation. Assuming that
'mass follows light' we constrain a lower limit of the total mass of the dSph
to be (1.7+/-0.2)*10^7 Msol. Contrary, if the mass in Leo I is dominated by a
constant density dark-matter (DM) halo, then the mass within the central 12' is
(2+/-0.6)*10^8 Msol. This leads to a mass-to-light ratio of >>6 (Ic_sol), and
possibly >75 if the DM halo dominates the mass and extends further out than
12'. In summary, our results show that Leo I is a symmetric, relaxed and bound
system; this supports the idea that Leo I is a dark-matter dominated system.Comment: 13 pages, 11 figures; accepted for publication in A
- …
