1,315 research outputs found

    Sustaining entrepreneurial business: a complexity perspective on processes that produce emergent practice

    Get PDF
    This article examines the management practices in an entrepreneurial small firm which sustain the business. Using a longitudinal qualitative case study, four general processes are identified (experimentation, reflexivity, organising and sensing), that together provide a mechanism to sustain the enterprise. The analysis draws on concepts from entrepreneurship and complexity science. We suggest that an entrepreneur’s awareness of the role of these parallel processes will facilitate their approaches to sustaining and developing enterprises. We also suggest that these processes operate in parallel at multiple levels, including the self, the business and inter-firm networks. This finding contributes to a general theory of entrepreneurship. A number of areas for further research are discussed arising from this result

    Scaling-up beginning farmers for wholesale production

    Get PDF
    With nearly 15 million people that live within 250 miles of Kansas City, the demand for local food is increasing. Local beginning farmers in the region want to reach an emerging wholesale market. However, selling directly to consumers demands different skills than the wholesale market requires. There are many educational programs offered in the region that are focused on direct to consumer sales. Unfortunately, there is a gap in educational programs that are offered to support beginning farmers that wish to expand into wholesale markets. In 2018, the Beginning Farmer Wholesale Project was started within the Growing Growers Kansas City program in congruence with the overall mission to improve the skills and livelihoods of the region’s growers. The project offers support and training to beginning farmers as they begin to navigate new market opportunities. It provides on-farm technical assistance, mentorship, opportunities to connect to wholesale buyers, a workshop series, a manual and an extensive foodshed GIS map. The ongoing project has seen several contributions to improving farmer access to wholesale markets. As of 2020, six workshops have been conducted that have covered a variety of farm production and marketing skills. Six farmer mentees have enrolled in the mentor program which enlists nine farmer mentors from across the region. Over twenty farmers have utilized the technical assistance service on their Kansas and Missouri farm operations and the farmer buyer matching program has resulted in thirteen beginning farmers gaining access to new markets. The project highlights the value of collaboration among organizations and the importance of offering multiple farmer services in order to improve wholesale access

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Conserve the eco-evolutionary dynamic, not the subspecies:Phenological divergence and gene flow between temporal cohorts of Euphilotes ancilla endemic to southern Nevada

    Get PDF
    Euphilotes ancilla purpura and cryptica (Lycaenidae), butterflies endemic to the Spring Mountains (Clark Co., Nevada), have been described as two univoltine, temporally isolated, sympatric taxa that utilize different early- and late-flowering larval host plant varieties (Eriogonum umbellatum). However, our results from field and laboratory indicate that this is not the case. The subspecies overlap in timing of adult reproductive flight (compilation of field records 1977 to 2018) and laboratory emergence of adults from early-season, non-diapause pupae indicate butterflies are not univoltine. Genetic samples collected from putative E. a. purpura (Early cohort) and cryptica (Late cohort) subpopulations show no evidence of genetic structure indicative of allochronic isolation in phylogenies of 26 mitochondrial DNA COI haplotypes and 18 nuclear ITS1 alleles. Analysis of molecular variance revealed 89% of mitochondrial DNA variation structured within and among subpopulations, with only 11% between the purportedly isolated subspecies. Analysis of isolation and migration indicated gene flow from the Early to Late cohort was 3 × greater than in the opposite direction. We conclude that, rather than two separate subspecies, Euphilotes ancilla exists in a network of partially interconnected subpopulations extending from 1750 to 3000 m across much of the Spring Mountains. Gene flow is related to the timing of adult flight and host plant flowering, contributing to the genetic variation in phenology necessary for evolutionary tracking of shifting flowering periods of larval host plants. Maintenance of connectivity and gene flow across the Spring Mountains is therefore essential for population persistence of both cohorts in the face of environmental change

    Quantitative localized proton-promoted dissolution kinetics of calcite using scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) has been used to determine quantitatively the kinetics of proton-promoted dissolution of the calcite (101̅4) cleavage surface (from natural “Iceland Spar”) at the microscopic scale. By working under conditions where the probe size is much less than the characteristic dislocation spacing (as revealed from etching), it has been possible to measure kinetics mainly in regions of the surface which are free from dislocations, for the first time. To clearly reveal the locations of measurements, studies focused on cleaved “mirror” surfaces, where one of the two faces produced by cleavage was etched freely to reveal defects intersecting the surface, while the other (mirror) face was etched locally (and quantitatively) using SECM to generate high proton fluxes with a 25 ÎŒm diameter Pt disk ultramicroelectrode (UME) positioned at a defined (known) distance from a crystal surface. The etch pits formed at various etch times were measured using white light interferometry to ascertain pit dimensions. To determine quantitative dissolution kinetics, a moving boundary finite element model was formulated in which experimental time-dependent pit expansion data formed the input for simulations, from which solution and interfacial concentrations of key chemical species, and interfacial fluxes, could then be determined and visualized. This novel analysis allowed the rate constant for proton attack on calcite, and the order of the reaction with respect to the interfacial proton concentration, to be determined unambiguously. The process was found to be first order in terms of interfacial proton concentration with a rate constant k = 6.3 (± 1.3) × 10–4 m s–1. Significantly, this value is similar to previous macroscopic rate measurements of calcite dissolution which averaged over large areas and many dislocation sites, and where such sites provided a continuous source of steps for dissolution. Since the local measurements reported herein are mainly made in regions without dislocations, this study demonstrates that dislocations and steps that arise from such sites are not needed for fast proton-promoted calcite dissolution. Other sites, such as point defects, which are naturally abundant in calcite, are likely to be key reaction sites

    Dual-barrel conductance micropipet as a new approach to the study of ionic crystal dissolution kinetics

    Get PDF
    A new approach to the study of ionic crystal dissolution kinetics is described, based on the use of a dual-barrel theta conductance micropipet. The solution in the pipet is undersaturated with respect to the crystal of interest, and when the meniscus at the end of the micropipet makes contact with a selected region of the crystal surface, dissolution occurs causing the solution composition to change. This is observed, with better than 1 ms time resolution, as a change in the ion conductance current, measured across a potential bias between an electrode in each barrel of the pipet. Key attributes of this new technique are: (i) dissolution can be targeted at a single crystal surface; (ii) multiple measurements can be made quickly and easily by moving the pipet to a new location on the surface; (iii) materials with a wide range of kinetics and solubilities are open to study because the duration of dissolution is controlled by the meniscus contact time; (iv) fast kinetics are readily amenable to study because of the intrinsically high mass transport rates within tapered micropipets; (v) the experimental geometry is well-defined, permitting finite element method modeling to allow quantitative analysis of experimental data. Herein, we study the dissolution of NaCl as an example system, with dissolution induced for just a few milliseconds, and estimate a first-order heterogeneous rate constant of 7.5 (±2.5) × 10–5 cm s–1 (equivalent surface dissolution flux ca. 0.5 ÎŒmol cm–2 s–1 into a completely undersaturated solution). Ionic crystals form a huge class of materials whose dissolution properties are of considerable interest, and we thus anticipate that this new localized microscale surface approach will have considerable applicability in the future

    The Banks set and the Uncovered Set in budget allocation problems

    Get PDF
    We examine how a society chooses to divide a given budget among various regions, projects or individuals. In particular, we characterize the Banks set and the Uncovered Set in such problems. We show that the two sets can be proper subsets of the set of all alternatives, and at times are very pointed in their predictions. This contrasts with well-known "chaos theorems," which suggest that majority voting does not lead to any meaningful predictions when the policy space is multidimensional

    Climate Change Predicted to Shift Wolverine Distributions, Connectivity, and Dispersal Corridors

    Get PDF
    Boreal species sensitive to the timing and duration of snow cover are particularly vulnerable to global climate change. Recent work has shown a link between wolverine (Gulo gulo) habitat and persistent spring snow cover through 15 May, the approximate end of the wolverine’s reproductive denning period. We modeled the distribution of snow cover within the Columbia, Upper Missouri, and Upper Colorado River Basins using a downscaled ensemble climate model. The ensemble model was based on the arithmetic mean of 10 global climate models (GCMs) that best fit historical climate trends and patterns within these three basins. Snow cover was estimated from resulting downscaled temperature and precipitation patterns using a hydrologic model. We bracketed our ensemble model predictions by analyzing warm (miroc 3.2) and cool (pcm1) downscaled GCMs. Because Moderate-Resolution Imaging Spectroradiometer (MODIS)-based snow cover relationships were analyzed at much finer grain than downscaled GCM output, we conducted a second analysis based on MODIS-based snow cover that persisted through 29 May, simulating the onset of spring two weeks earlier in the year. Based on the downscaled ensemble model, 67% of predicted spring snow cover will persist within the study area through 2030–2059, and 37% through 2070–2099. Estimated snow cover for the ensemble model during the period 2070– 2099 was similar to persistent MODIS snow cover through 29 May. Losses in snow cover were greatest at the southern periphery of the study area (Oregon, Utah, and New Mexico, USA) and least in British Columbia, Canada. Contiguous areas of spring snow cover become smaller and more isolated over time, but large (.1000 km2) contiguous areas of wolverine habitat are predicted to persist within the study area throughout the 21st century for all projections. Areas that retain snow cover throughout the 21st century are British Columbia, north-central Washington, northwestern Montana, and the Greater Yellowstone Area. By the late 21st century, dispersal modeling indicates that habitat isolation at or above levels associated with genetic isolation of wolverine populations becomes widespread. Overall, we expect wolverine habitat to persist throughout the species range at least for the first half of the 21st century, but populations will likely become smaller and more isolated
    • 

    corecore