37,297 research outputs found
Analytical and finite-element study of optimal strain distribution in various beam shapes for energy harvesting applications
Due to the increasing demand for harvesting energy from environmental vibration, for use in self-powered electronic applications, cantilever-based vibration energy harvesting has attracted great interest from various parties and become one of the most common approaches to convert redundant mechanical energy into electrical energy. As the output voltage produces from a piezoelectric material depends greatly on the geometric shape and the size of the beam, there is a need to model and compare the performance of cantilever beams of differing geometries. This paper presents the study of strain distribution in various shapes of cantilever beams, including a convex and concave edge profile elliptical beams that have been overseen in most of the prior literature. Both analytical and finite element models are derived and the resultant strain distributions in the beam are computed based on MATLAB solver and ANSYS finite element analysis tools. An optimum geometry for a vibration-based energy harvester system is verified. Lastly, experimental results comparing the power density for a triangular and rectangular piezoelectric beams are also presented to validate the finding of the study and the claim as suggested in the literature is verified
Spinless Topological Insulators without Time-Reversal Symmetry
We explore the 32 crystallographic point groups and identify topological
phases of matter with robust surface modes. For n =3,4 and 6 of the C_{nv}
groups, we find the first-known 3D topological insulators without spin-orbit
coupling, and with surface modes that are protected only by point groups, i.e.,
not needing time-reversal symmetry. To describe these C_{nv} systems, we
introduce the notions of (a) a halved mirror chirality: an integer invariant
which characterizes half-mirror-planes in the 3D Brillouin zone, and (b) a bent
Chern number: the traditional TKNN invariant generalized to bent 2D manifolds.
We find that a Weyl semimetallic phase intermediates two gapped phases with
distinct halved chiralities
Parafermionic phases with symmetry-breaking and topological order
Parafermions are the simplest generalizations of Majorana fermions that
realize topological order. We propose a less restrictive notion of topological
order in 1D open chains, which generalizes the seminal work by Fendley [J.
Stat. Mech., P11020 (2012)]. The first essential property is that the
groundstates are mutually indistinguishable by local, symmetric probes, and the
second is a generalized notion of zero edge modes which cyclically permute the
groundstates. These two properties are shown to be topologically robust, and
applicable to a wider family of topologically-ordered Hamiltonians than has
been previously considered. An an application of these edge modes, we formulate
a new notion of twisted boundary conditions on a closed chain, which guarantees
that the closed-chain groundstate is topological, i.e., it originates from the
topological manifold of degenerate states on the open chain. Finally, we
generalize these ideas to describe symmetry-breaking phases with a
parafermionic order parameter. These exotic phases are condensates of
parafermion multiplets, which generalizes Cooper pairing in superconductors.
The stability of these condensates are investigated on both open and closed
chains.Comment: 27 pages, 9 figure
Insider trading, regulation and the components of the Bid-Ask Spread
Insiders pose a risk to providers of liquidity, who require compensation for this and consequentially widen spreads. In this paper we investigate the relationship between insider trading regulation and the cost of trading by decomposing the components of the spread before and after the enactment of strict new laws. We find a significant decrease in information asymmetry, which is mainly observed in illiquid and high prechange information asymmetry companies. Results are robust to model specification. We also see a decrease in the contribution of information asymmetry to price volatility. Overall, our results may have implications for markets with similar characteristics
Exons, introns and DNA thermodynamics
The genes of eukaryotes are characterized by protein coding fragments, the
exons, interrupted by introns, i.e. stretches of DNA which do not carry any
useful information for the protein synthesis. We have analyzed the melting
behavior of randomly selected human cDNA sequences obtained from the genomic
DNA by removing all introns. A clear correspondence is observed between exons
and melting domains. This finding may provide new insights in the physical
mechanisms underlying the evolution of genes.Comment: 4 pages, 8 figures - Final version as published. See also Phys. Rev.
Focus 15, story 1
Staying true with the help of others: doxastic self-control through interpersonal commitment
I explore the possibility and rationality of interpersonal mechanisms of doxastic self-control, that is, ways in which individuals can make use of other people in order to get themselves to stick to their beliefs. I look, in particular, at two ways in which people can make interpersonal epistemic commitments, and thereby willingly undertake accountability to others, in order to get themselves to maintain their beliefs in the face of anticipated “epistemic temptations”. The first way is through the avowal of belief, and the second is through the establishment of collective belief. I argue that both of these forms of interpersonal epistemic commitment can function as effective tools for doxastic self-control, and, moreover, that the control they facilitate should not be dismissed as irrational from an epistemic perspective
First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder
The effect of the electron-phonon interaction on magnetization relaxation is
studied within the framework of first-principles scattering theory for Fe, Co,
and Ni by displacing atoms in the scattering region randomly with a thermal
distribution. This "frozen thermal lattice disorder" approach reproduces the
non-monotonic damping behaviour observed in ferromagnetic resonance
measurements and yields reasonable quantitative agreement between calculated
and experimental values. It can be readily applied to alloys and easily
extended by determining the atomic displacements from ab initio phonon spectra
Fluctuations of the Magnetization in Thin Films due to Conduction Electrons
A detailed analysis of damping and noise due to a {\it sd}-interaction in a
thin ferromagnetic film sandwiched between two large normal metal layers is
carried out. The magnetization is shown to obey in general a non-local equation
of motion which differs from the the Gilbert equation and is extended to the
non-adiabatic regime. To lowest order in the exchange interaction and in the
limit where the Gilbert equation applies, we show that the damping term is
enhanced due to interfacial effects but it also shows oscillations as a
function of the film thickness. The noise calculation is however carried out to
all orders in the exchange coupling constant. The ellipticity of the precession
of the magnetization is taken into account. The damping is shown to have a
Gilbert form only in the adiabatic limit while the relaxation time becomes
strongly dependent on the geometry of the thin film. It is also shown that the
induced noise characteristic of sd-exchange is inherently colored in character
and depends on the symmetry of the Hamiltonian of the magnetization in the
film. We show that the sd-noise can be represented in terms of an external
stochastic field which is white only in the adiabatic regime. The temperature
is also renormalized by the spin accumulation in the system. For large
intra-atomic exchange interactions, the Gilbert-Brown equation is no longer
valid
- …
