5,870 research outputs found

    Determination and impact of surface radiative processes for TOGA COARE

    Get PDF
    Experiments using atmospheric general circulation models have shown that the atmospheric circulation is very sensitive to small changes in sea surface temperature in the tropical western Pacific Ocean warm pool region. The mutual sensitivity of the ocean and the atmosphere in the warm pool region places stringent requirements on models of the coupled ocean atmosphere system. At present, the situation is such that diagnostic studies using available data sets have been unable to balance the surface energy budget in the warm pool region to better than 50 to 80 W/sq m. The Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment (COARE) is an observation and modelling program that aims specifically at the elucidation of the physical process which determine the mean and transient state of the warm pool region and the manner in which the warm pool interacts with the global ocean and atmosphere. This project focuses on one very important aspect of the ocean atmosphere interface component of TOGA COARE, namely the temporal and spatial variability of surface radiative fluxes in the warm pool region

    National counter-terrorism (C-T) policies and challenges to human rights and civil liberties: Case study of United Kingdom

    Get PDF
    In the UK the rise post-2005 in “home-grown” terrorism, relying to a significant extent on strikes on soft targets by “self-starters,” means that the search for effective preventive measures remains a continuing concern. Below a number of the preventive counter-terror measures adopted post-9/11, and incrementally strengthened in response to the current threat, are found to fall into three categories and represent interventions at the stages in the path toward attacks. This chapter focuses on selected examples of these preventive measures. In terms of three key stages, firstly, there is the attempt to prevent radicalization, under the “Prevent” strategy. A second strategy relies on taking certain measures to control the activities of those considered likely – on the balance of probabilities – to engage in terrorist-related activity. A third preventive strategy relies on the special terrorism offences under the Terrorism Acts 2000 and 2006, as amended, intended to allow for intervention at a very early stage in terrorist plots and in preparing or instigating terrorist acts (“precursor” offences)

    Feedback Control of Flight Speed to Reduce Unmanned Aerial System Noise

    Get PDF
    The aim of this initial study is to incorporate an acoustic metric into the flight control system of an unmanned aerial vehicle. This could be used to mitigate the noise impact of unmanned aerial systems operating near residential communities. To incorporate an acoustic metric into a pre-existing flight control system, two things are required: a source noise model, and an acoustic controller. An acoustic model was developed based on Gutin's work to estimate propeller noise. The flight control system was augmented with a controller to reduce propeller noise using feedback control of the commanded flight speed until an acoustic target was met. This control approach focuses on modifying flight speed only, with no perturbation to the trajectory. Multiple flight simulations were performed and the results showed that integrating an acoustic metric into the flight control system of an unmanned aerial system is possible

    Novel Characteristics of Valveless Pumping

    Get PDF
    This study investigates the occurrence of valveless pumping in a fluidfilled system consisting of two open tanks connected by an elastic tube. We show that directional flow can be achieved by introducing a periodic pinching applied at an asymmetrical location along the tube, and that the flow direction depends on the pumping frequency. We propose a relation between wave propagation velocity, tube length, and resonance frequencies associated with shifts in the pumping direction using numerical simulations. The eigenfrequencies of the system are estimated from the linearized system, and we show that these eigenfrequencies constitute the resonance frequencies and the horizontal slope frequencies of the system; 'horizontal slope frequency' being a new concept. A simple model is suggested, explaining the effect of the gravity driven part of the oscillation observed in response to the tank and tube diameter changes. Results are partly compared with experimental findings.Art. no. 22450

    Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements

    Get PDF
    We present a new remote sensing technique to infer the average asymmetry parameter of ice crystals near cloud top from multi-directional polarization measurements. The method is based on previous findings that (a) complex aggregates of hexagonal crystals generally have scattering phase matrices resembling those of their components; and (b) scattering phase matrices systematically vary with aspect ratios of crystals and their degree of microscale surface roughness. Ice cloud asymmetry parameters are inferred from multi-directional polarized reflectance measurements by searching for the closest fit in a look-up table of simulated polarized reflectances computed for cloud layers that contain individual, randomly oriented hexagonal columns and plates with varying aspect ratios and roughness values. The asymmetry parameter of the hexagonal particle that leads to the best fit with the measurements is considered the retrieved value. For clouds with optical thickness less than 5, the cloud optical thickness must be retrieved simultaneously with the asymmetry parameter, while for optically thicker clouds the asymmetry parameter retrieval is independent of cloud optical thickness. Evaluation of the technique using simulated measurements based on the optical properties of a number of complex particles and their mixtures shows that the ice crystal asymmetry parameters are generally retrieved to within 5%, or about 0.04 in absolute terms. The retrieval scheme is largely independent of calibration errors, range and sampling density of scattering angles and random noise in the measurements. The approach can be applied to measurements of past, current and future airborne and satellite instruments that measure multi-directional polarized reflectances of ice-topped clouds

    Corruption in migration management: a network perspective

    Get PDF
    This paper explores the relation between networks as an emerging mode of public governance and corruption. Adopting the theoretical lens of actor-network theory (ANT), the paper investigates an Italian episode of corruption related to the awarding of government contracts for the management of the Mineo’s CARA, the Europe's largest reception centre for migrants. The analysis shows that a governance network may turn corruption itself into a network where abuse of power can proliferate thanks to the opacity resulting from the multiplicity of actors, interactions, and fragmentation characterizing the governance system

    Inflation with General Initial Conditions for Scalar Perturbations

    Full text link
    We explore the possibility of a single field quasi-de Sitter inflationary model with general initial state for primordial fluctuations. In this paper, first we compute the power spectrum and the bispectrum of scalar perturbations with coherent state as the initial state. We find that a large class of coherent states are indistinguishable from the Bunch-Davies vacuum state and hence consistent with the current observations. In case of a more general initial state built over Bunch-Davies vacuum state, we show that the constraints on the initial state from observed power spectrum and local bispectrum are relatively weak and for quasi-de Sitter inflation a large number of initial states are consistent with the current observations. However, renormalizability of the energy-momentum tensor of the fluctuations constraints the initial state further.Comment: Updated to match published version, 20 page

    Validation and Determination of Ice Water Content - Radar Reflectivity Relationships during CRYSTAL-FACE: Flight Requirements for Future Comparisons

    Get PDF
    In order for clouds to be more accurately represented in global circulation models (GCM), there is need for improved understanding of the properties of ice such as the total water in ice clouds, called ice water content (IWC), ice particle sizes and their shapes. Improved representation of clouds in models will enable GCMs to better predict for example, how changes in emissions of pollutants affect cloud formation and evolution, upper tropospheric water vapor, and the radiative budget of the atmosphere that is crucial for climate change studies. An extensive cloud measurement campaign called CRYSTAL-FACE was conducted during Summer 2002 using instrumented aircraft and a variety of instruments to measure properties of ice clouds. This paper deals with the measurement of IWC using the Harvard water vapor and total water instruments on the NASA WB-57 high-altitude aircraft. The IWC is measured directly by these instruments at the altitude of the WB-57, and it is compared with remote measurements from the Goddard Cloud Radar System (CRS) on the NASA ER-2. CRS measures vertical profiles of radar reflectivity from which IWC can be estimated at the WB-57 altitude. The IWC measurements obtained from the Harvard instruments and CRS were found to be within 20-30% of each other. Part of this difference was attributed to errors associated with comparing two measurements that are not collocated in time an space since both aircraft were not in identical locations. This study provides some credibility to the Harvard and CRS-derived IWC measurements that are in general difficult to validate except through consistency checks using different measurement approaches
    corecore