67 research outputs found

    Synchronisation of time--delay systems

    Full text link
    We present the linear-stability analysis of synchronised states in coupled time-delay systems. There exists a synchronisation threshold, for which we derive upper bounds, which does not depend on the delay time. We prove that at least for scalar time-delay systems synchronisation is achieved by transmitting a single scalar signal, even if the synchronised solution is given by a high-dimensional chaotic state with a large number of positive Lyapunov-exponents. The analytical results are compared with numerical simulations of two coupled Mackey-Glass equations

    Estimation of Lyapunov spectra from space-time data

    Full text link
    A method to estimate Lyapunov spectra from spatio-temporal data is presented, which is well-suited to be applied to experimental situations. It allows to characterize the high-dimensional chaotic states, with possibly a large number of positive Lyapunov exponents, observed in spatio-temporal chaos. The method is applied to data from a coupled map lattice

    The identification of continuous, spatiotemporal systems

    Full text link
    We present a method for the identification of continuous, spatiotemporal dynamics from experimental data. We use a model in the form of a partial differential equation and formulate an optimization problem for its estimation from data. The solution is found as a multivariate nonlinear regression problem using the ACE-algorithm. The procedure is successfully applied to data, obtained by simulation of the Swift-Hohenberg equation. There are no restrictions on the dimensionality of the investigated system, allowing for the analysis of high-dimensional chaotic as well as transient dynamics. The demands on the experimental data are discussed as well as the sensitivity of the method towards noise

    Identifying and modelling delay feedback systems

    Full text link
    Systems with delayed feedback can possess chaotic attractors with extremely high dimension, even if only a few physical degrees of freedom are involved. We propose a state space reconstruction from time series data of a scalar observable, coming along with a novel method to identify and model such systems, if a single variable is fed back. Making use of special properties of the feedback structure, we can understand the structure of the system by constructing equivalent equations of motion in spaces with dimensions which can be much smaller than the dimension of the chaotic attractor. We verify our method using both numerical and experimental data

    Chaos Synchronization of delayed systems in the presence of delay time modulation

    Full text link
    We investigate synchronization in the presence of delay time modulation for application to communication. We have observed that the robust synchronization is established by a common delay signal and its threshold is presented using Lyapunov exponents analysis. The influence of the delay time modulation in chaotic oscillators is also discussed.Comment: 9 pages, 6 figure

    Symbolic dynamics and synchronization of coupled map networks with multiple delays

    Full text link
    We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol sequences related to the characteristics of the dynamics. In particular, we show that the resulting forbidden sequences are closely related to the time delays in the system. We present two applications to coupled map lattices, namely (1) detecting synchronization and (2) determining unknown values of the transmission delays in networks with possibly directed and weighted connections and measurement noise. The method is applicable to multi-dimensional as well as set-valued maps, and to networks with time-varying delays and connection structure.Comment: 13 pages, 4 figure

    A Tool to Recover Scalar Time-Delay Systems from Experimental Time Series

    Full text link
    We propose a method that is able to analyze chaotic time series, gained from exp erimental data. The method allows to identify scalar time-delay systems. If the dynamics of the system under investigation is governed by a scalar time-delay differential equation of the form dy(t)/dt=h(y(t),y(tτ0))dy(t)/dt = h(y(t),y(t-\tau_0)), the delay time τ0\tau_0 and the functi on hh can be recovered. There are no restrictions to the dimensionality of the chaotic attractor. The method turns out to be insensitive to noise. We successfully apply the method to various time series taken from a computer experiment and two different electronic oscillators
    corecore