769 research outputs found

    Regional frequency analysis of short duration rainfall extremes using gridded daily rainfall data as co-variate

    Get PDF
    A regional partial duration series (PDS) model is applied for estimation of intensity duration frequency relationships of extreme rainfalls in Denmark. The model uses generalised least squares regression to relate the PDS parameters to gridded rainfall statistics from a dense network of rain gauges with daily measurements. The Poisson rate is positively correlated to the mean annual precipitation for all durations considered (1 min to 48 hours). The mean intensity can be assumed constant over Denmark for durations up to 1 hour. For durations larger than 1 hour, the mean intensity is significantly correlated to the mean extreme daily precipitation. A Generalised Pareto distribution with a regional constant shape parameter is adopted. Compared to previous regional studies in Denmark, a general increase in extreme rainfall intensity for durations up to 1 hour is found, whereas for larger durations both increases and decreases are seen. A subsample analysis is conducted to evaluate the impacts of non-stationarities in the rainfall data. The regional model includes the non-stationarities as an additional source of uncertainty, together with sampling uncertainty and uncertainty caused by spatial variability.</jats:p

    Periodic and Quasi-Periodic Compensation Strategies of Extreme Outages caused by Polarization Mode Dispersion and Amplifier Noise

    Full text link
    Effect of birefringent disorder on the Bit Error Rate (BER) in an optical fiber telecommunication system subject to amplifier noise may lead to extreme outages, related to anomalously large values of BER. We analyze the Probability Distribution Function (PDF) of BER for various strategies of Polarization Mode Dispersion (PMD) compensation. A compensation method is proposed that is capable of more efficient extreme outages suppression, which leads to substantial improvement of the fiber system performance.Comment: 3 pages, 1 figure, Submitted to IEEE Photonics Letter

    Extremely low vapor‐pressure data as access to PC‐SAFT parameter estimation for ionic liquids and modeling of precursor solubility in ionic liquids

    Get PDF
    Precursor solubility is a crucial factor in industrial applications, dominating the outcome of reactions and purification steps. The outcome and success of thermodynamic modelling of this industrially important property with equations of states, such as Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), vastly depends on the quality of the pure-component parameters. The pure-component parameters for low-volatile compounds such as ionic liquids (ILs) have been commonly estimated using mixture properties, e. g. the osmotic pressure of aqueous solutions. This leads to parameters that depend on the solvent, and transferability to other mixtures often causes poor modeling results. Mixture-independent experimental properties would be a more suitable basis for the parameter estimation offering a way to universal parameter sets. Model parameters for ILs are available in the literature [10.1016/j.fluid.2012.05.029], but they were estimated using pure-IL density data. The present work focuses on a step towards a more universal estimation strategy that includes new experimental vapor-pressure data of the pure IL. ILs exhibit an almost negligible vapor pressure in magnitude of usually 10−5 Pa even at elevated temperatures. In this work, such vapor-pressure data of a series of 1-ethyl-3-methyl-imidazolium-based [C2mim]-ILs with various IL-anions (e. g. tetrafluoroborate [BF4]−, hexafluorophosphate [PF6]−, bis(trifluoromethylsulfonyl)imide [NTf2]−) were experimentally determined and subsequently used for PC-SAFT parameter estimation. The so-determined parameters were used to predict experimental molecular precursor solubility in ILs and infinitely diluted activity coefficients of various solvents in ILs. The parameters were further compared to modeling results using classical parametrization methods (use of liquid-density data only for the molecular PC-SAFT and the ion-based electrolyte PC-SAFT). As a result, the modeled precursor solubilities using the new approach are much more precise than using the classical parametrization methods, and required binary parameters were found to be much smaller (if needed). In sum, including the pure-component vapor-pressure data of ILs opens the door towards parameter estimation that is not biased by mixture data. This procedure might be suitable also for polymers and for all kind of ionic species but needs extension to ion-specific parametrization in the long term

    In dialogue with time

    Full text link
    • 

    corecore