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ABSTRACT 20 

A regional partial duration series (PDS) model is applied for estimation of intensity duration 21 

frequency relationships of extreme rainfalls in Denmark. The model uses generalised least 22 

squares regression to relate the PDS parameters to gridded rainfall statistics from a dense 23 

network of rain gauges with daily measurements. The Poisson rate is positively correlated to the 24 

mean annual precipitation for all durations considered (1 min to 48 hours). The mean intensity 25 

can be assumed constant over Denmark for durations up to 1 hour. For durations larger than 1 26 

hour the mean intensity is significantly correlated to the mean extreme daily precipitation. A 27 

Generalised Pareto distribution with a regional constant shape parameter is adopted. Compared 28 

to previous regional studies in Denmark a general increase in extreme rainfall intensity for 29 

durations up to 1 hour is found, whereas for larger durations both increases and decreases are 30 

seen. A subsample analysis is conducted to evaluate the impacts of non-stationarities in the 31 

rainfall data. The regional model includes the non-stationarities as an additional source of 32 

uncertainty together with sampling uncertainty and uncertainty caused by spatial variability. 33 

 34 

KEYWORDS: extreme rainfall, idf-curves, L-moments, partial duration series, regional analysis  35 
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INTRODUCTION 37 

 38 

Design of water infrastructure is often based on intensity duration frequency (IDF) relationships 39 

of extreme rainfall (e.g. Schilling, 1991; Arnbjerg-Nielsen et al., 2013). They provide 40 

information about the mean rainfall intensity of different durations for various frequencies or 41 

return periods. IDF relationships are relevant for a wide range of temporal scales; from sub-42 

hourly duration for design of storm water pipes in the upstream parts of sewer networks to 43 

several hours or days for design of retention basins that collect water from large catchments. IDF 44 

relationships can be estimated by performing an extreme value analysis of rainfall data at the site 45 

of interest. Such estimates, however, may be hampered by the lack of sufficiently long rainfall 46 

records when extrapolating to large return periods. In regional frequency analysis data from 47 

several sites within a region are pooled whereby the estimation uncertainty can be reduced 48 

significantly (e.g. Madsen & Rosbjerg, 1997a; Kyselý et al., 2011; Burn, 2014). In addition, 49 

regional frequency analysis facilitates estimation of IDF relationships at ungauged sites by 50 

combining regional extreme value statistics and site specific climatic and physiographic 51 

characteristics. 52 

 53 

A widely applied method in regional frequency analysis is the index-event approach (originally 54 

named the index-flood approach in flood frequency analysis) using L-moments (Hosking & 55 

Wallis, 1993; 1997). This approach has been used in several regional frequency analysis studies 56 

of extreme rainfall, e.g. in Australia (Haddad et al., 2011), Canada (Alila, 1999; Burn, 2014), 57 

Czech Republic (Kyselý et al., 2011), Italy (Di Baldassarre et al., 2006), Slovakia (Gaál et al., 58 

2008), South Africa (Smithers & Schulze, 2001), and Washington State (Wallis et al., 2007). All 59 
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these studies are based on the traditional index-event method using annual maximum series 60 

(AMS). Madsen & Rosbjerg (1997a) developed a regional index-event approach based on Partial 61 

Duration Series (PDS) that includes all events above a specified threshold level in the extreme 62 

value analysis. Madsen et al. (1997) showed that the regional index-event PDS model with 63 

generalized Pareto distributed exceedances, in general, is more efficient (in terms of quantile 64 

estimation uncertainty) than the corresponding index-event AMS model based on the generalized 65 

extreme value distribution. The regional PDS model has been further developed and applied for 66 

estimation of IDF relationships in Denmark (Madsen et al., 2002; 2009). 67 

 68 

In the traditional index-event approach data are pooled within a fixed region that can be assumed 69 

to be homogenous with respect to certain statistical characteristics, typically second and higher 70 

order moments. Alternatively, a region of influence approach can be used to identify separate 71 

homogeneous pooling groups for each site (Burn, 1990). The region of influence approach has 72 

been applied to regional rainfall analysis by Kyselý et al. (2011) and Burn (2014). Another 73 

method that relaxes the use of fixed regions, or can be used in combination with a fixed region or 74 

region of influence approach, is based on establishing regression relationships that describe the 75 

spatial variation of extreme rainfall statistics using covariate information in terms of 76 

physiographic and climatic characteristics. Such regional regression relationships also facilitate 77 

estimation at ungauged sites. In a regional analysis in Washington State, Wallis et al. (2007) 78 

found the L-Coefficient of variation (L-CV) and L-skewness to vary systematically with the 79 

mean annual precipitation (MAP). Di Baldassarre et al. (2006) also related L-CV and L-80 

Skewness to MAP in their study of rainfall extremes in Northern Italy, and Madsen et al. (2002, 81 

2009) found that the annual number of extreme events in a regional PDS model of Danish 82 
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rainfall extremes could be related to MAP. Haddad et al. (2011) related L-CV and L-skewness as 83 

well as the index parameter to location and distance to the coast, whereas Beguería & Vicente-84 

Serrano (2006) applied a regional regression model relating the PDS parameters to location, 85 

altitude and slope. 86 

 87 

This study considers regional estimation of IDF relationships in Denmark. It builds on the 88 

regional PDS model developed by Madsen et al. (2002) and later updated by Madsen et al. 89 

(2009). The current study includes rainfall data up to 2012, corresponding to 50% more data in 90 

terms of station-years compared to the previous study by Madsen et al. (2009). In addition, the 91 

regional model is extended by using new covariate information in terms of gridded rainfall 92 

statistics from a dense rain gauge network measuring daily rainfall. In the update of the regional 93 

model by Madsen et al. (2009) a general increase in extreme rainfall was found, with most 94 

pronounced increases for durations between 10 min and 3 hours. In a recent study by Gregersen 95 

et al. (2013) a significant increase was found in the annual number of extreme events for all 96 

durations analysed between 1 and 24 hours and in the mean extreme intensity for 1 and 3-hour 97 

durations. In this study, the impacts of these non-stationarities on the regional model are 98 

investigated using subsample analysis. 99 

 100 

 101 

DATA AND METHODS 102 

 103 

Rainfall data 104 

Rainfall data from a network of high-resolution rain gauges in Denmark are used in the analysis. 105 

The network is based on RIMCO tipping bucket gauges with 0.2 mm resolution and tips being 106 
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recorded every minute. The network was established in 1979 and is operated by the Water 107 

Pollution Committee of the Society of Danish Engineers and the Danish Meteorological Institute 108 

(Jørgensen et al., 1998). The gauges have been maintained, but the principles of measuring and 109 

calibrating the gauges have not been changed in the period investigated.  110 

 111 

The data analysed consist of rainfall intensities with a temporal resolution of 1 minute for 112 

individual rain events separated by dry periods of at least one hour. From the 1-minute intensity 113 

data maximum rainfall intensities for durations ranging between 1 minute and 48 hours are 114 

extracted using a moving window approach (Madsen et al., 2002). For durations less than one 115 

hour, independent events are separated by at least one hour dry periods. For durations larger than 116 

one hour, independent events are separated by dry periods that are at least as large as the duration 117 

considered. In this case the separate events defined for the 1-minute intensity data will be merged 118 

into fewer and larger independent events. For the extreme value analysis Partial Duration Series 119 

(PDS) are derived for each duration from the series of event-based maximum intensities by 120 

including intensities above a pre-defined threshold level. The same threshold levels as applied in 121 

the previous analyses (Madsen et al., 2002; 2009) are used. Short-duration (less than 1-2 hours) 122 

extremes are primarily caused by convective rainfall in summer months, whereas long-duration 123 

(larger than 12-24 hours) extremes are caused by frontal rainfall and can occur all year round.  124 

 125 

Rainfall data used in the analysis cover the period 1 January 1979 – 31 December 2012 and 126 

include 83 stations with more than 10 years of observations. The location of the 83 stations is 127 

shown in Supplementary Material Figure 1, and the distribution of observation periods is shown 128 

in Figure 1. The dataset corresponds to a total of 1881 station-years. The earlier study by Madsen 129 
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et al. (2009) included 66 stations with a total of 1250 station-years, and hence the current study 130 

comprises an increase in station-years of 50%. 131 

 132 

The development of the annual number of station-years shows a relatively constant level of about 133 

40 station-years per year up to 1990, followed by a steady increase up to a level of about 70 134 

station-years per year during the last 10 years (see Figure 1). To evaluate the impact of the 135 

development in data availability over time a subsample of 31 stations that have more than 30 136 

years of observations is analysed. The subsample includes 999 station-years in total.  137 

 138 

 139 

Figure 1  Distribution of observation periods of the 83 stations included in the analysis (left), 140 
and development of the annual number of station-years during the period 1979-2012 141 
for, respectively, the full sample of 83 stations and the subsample consisting of the 142 
31 stations with more than 30 years of data (right). 143 

 144 

In the regional model covariate information from another precipitation dataset, the Climate Grid 145 

Denmark (CGD), is used. CGD is a gridded dataset of daily precipitation prepared by the Danish 146 

Meteorological Institute (Scharling, 2012). It has a spatial resolution of 10x10 km and covers the 147 

period 1989-2010. The dataset is based on interpolation of rain gauge measurements from more 148 

than 300 Hellman gauges using an inverse distance weighting approach (Scharling, 1999). From 149 
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the CGD dataset the mean annual precipitation and the mean extreme daily precipitation are 150 

calculated. The mean annual precipitation (MAP) varies between 550 and 950 mm over 151 

Denmark with the highest values in the Western part of the country (see Figure 3). The mean 152 

extreme daily precipitation (µCGD) is estimated from the CGD data using a PDS model with a 153 

regional constant threshold level corresponding to approximately three events per year. It varies 154 

between 24.5 and 29.5 mm over Denmark with larger values in eastern Zealand, northern Jutland 155 

and southern islands (see Figure 3). 156 

 157 

In the previous studies by Madsen et al. (2002, 2009) different physiographic characteristics 158 

(geographical location, altitude, shelter index) were included as covariates in the regression 159 

analysis. However, none of these were found significant for describing the regional variability 160 

and hence are not included in this study. 161 

 162 

Regional model 163 

The regional extreme value model developed by Madsen et al. (2002) is applied in this study. 164 

The model is based on the PDS approach using a regional constant threshold level to define PDS 165 

of extreme rainfall intensities at the different stations. In the regional PDS model the annual 166 

number of extreme events is assumed to follow a Poisson distribution, and the magnitude of the 167 

extreme events is assumed to follow a Generalised Pareto (GP) distribution. For determination of 168 

a regional parent distribution the previous studies by Madsen et al. (2002, 2009) applied the L-169 

moment goodness-of-fit test proposed by Hosking & Wallis (1993) and extended by Madsen et 170 

al. (2002) for application to two-parameter distributions used in PDS modelling. These studies 171 
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showed that the GP distribution was, in general, preferable for the range of rainfall durations 172 

considered. 173 

 174 

In the regional PDS model the Poisson rate (λ), and the mean (µ) and L-CV (τ2) of the 175 

exceedance magnitudes are modelled as regional variables. The regional model estimate of the 176 

rainfall intensity for a given return period T is then given by (Madsen et al., 2002) 177 

 178 

�̂�𝑧𝑇𝑇 = 𝑧𝑧0 + �̂�𝜇
1 + �̂�𝜅
�̂�𝜅

�1 − �
1
�̂�𝜆𝑇𝑇
�
𝜅𝜅�

�   , �̂�𝜅 =
1
�̂�𝜏2
− 2 

 
(1) 

 179 

where z0 is the regional threshold level, �̂�𝜆, �̂�𝜇 , and �̂�𝜏2 are regional model estimates of the Poisson 180 

rate, mean, and L-CV, respectively, and �̂�𝜅 is the corresponding estimate of the GP shape 181 

parameter. 182 

 183 

The regional variability of the PDS parameters are analysed using generalised least squares 184 

(GLS) regression (Stedinger & Tasker, 1985; Madsen & Rosbjerg, 1997b). The GLS regression 185 

model accounts for sampling uncertainties of the PDS parameter estimates as well as correlations 186 

between the parameter estimates due to concurrent extreme events observed at different stations 187 

in the region. The following regression model is considered 188 

 189 

𝜃𝜃�𝑖𝑖 = 𝛽𝛽0 + �𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘𝑖𝑖

𝑝𝑝

𝑘𝑘=1

+ 𝜔𝜔𝑖𝑖   , 𝑖𝑖 = 1,2, . . ,𝑀𝑀 

 

(2) 

 190 

9 
 



where 𝜃𝜃�𝑖𝑖 denotes an estimate of one of the PDS parameters at station i, M is the number of 191 

stations, 𝛽𝛽𝑘𝑘 are the regression parameters, 𝑥𝑥𝑘𝑘𝑖𝑖 are the covariates, and 𝜔𝜔𝑖𝑖 are the model residuals 192 

with covariance matrix 193 

 194 

∑ =

⎝

⎛
𝜎𝜎𝜀𝜀12 + 𝜎𝜎𝛿𝛿2 𝜎𝜎𝜀𝜀1𝜎𝜎𝜀𝜀2𝜌𝜌12
𝜎𝜎𝜀𝜀2𝜎𝜎𝜀𝜀1𝜌𝜌12 𝜎𝜎𝜀𝜀22 + 𝜎𝜎𝛿𝛿2

…
𝜎𝜎𝜀𝜀1𝜎𝜎𝜀𝜀𝜀𝜀𝜌𝜌1𝜀𝜀
𝜎𝜎𝜀𝜀2𝜎𝜎𝜀𝜀𝜀𝜀𝜌𝜌2𝜀𝜀

⋮ ⋱ ⋮
𝜎𝜎𝜀𝜀𝜀𝜀𝜎𝜎𝜀𝜀1𝜌𝜌1𝜀𝜀 𝜎𝜎𝜀𝜀𝜀𝜀𝜎𝜎𝜀𝜀2𝜌𝜌2𝜀𝜀 … 𝜎𝜎𝜀𝜀𝜀𝜀2 + 𝜎𝜎𝛿𝛿2 ⎠

⎞ 

 

(3) 
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In Eq. (3), 𝜎𝜎𝜀𝜀𝑖𝑖2  is the sampling error variance, 𝜎𝜎𝛿𝛿2 is the residual model error variance, and 𝜌𝜌𝑖𝑖𝑖𝑖 is 196 

the sampling error correlation coefficient. Estimation of sampling variances and correlations to 197 

be used in the GLS regression model are described in Madsen et al. (2002). 𝜎𝜎𝛿𝛿2 is estimated 198 

along with the regression parameters using an iterative scheme, see Madsen & Rosbjerg (1997b) 199 

for details. 200 

 201 

The GLS regression model provides estimates of the PDS parameters and their associated 202 

variances at any location in the region. The T-year estimate at a given location is then obtained 203 

from Eq. (1). The variance of the T-year estimate is calculated based on the variances of the PDS 204 

parameter estimates from the GLS regression models using a Taylor series approximation of Eq. 205 

(1) 206 

 207 

𝑉𝑉𝑉𝑉𝑉𝑉{�̂�𝑧𝑇𝑇} = �
𝜕𝜕𝑧𝑧𝑇𝑇
𝜕𝜕𝜆𝜆

�
2

𝑉𝑉𝑉𝑉𝑉𝑉��̂�𝜆� + �
𝜕𝜕𝑧𝑧𝑇𝑇
𝜕𝜕𝜇𝜇

�
2

𝑉𝑉𝑉𝑉𝑉𝑉{�̂�𝜇} + �
𝜕𝜕𝑧𝑧𝑇𝑇
𝜕𝜕𝜅𝜅

�
2

𝑉𝑉𝑉𝑉𝑉𝑉{�̂�𝜅} 

 
(4) 

 208 

where the partial derivatives are evaluated around the GLS parameter estimates. 209 
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 210 

The variances of the estimated PDS parameters include both residual model error variance and 211 

sampling variance corrected for intersite correlations. When only the intercept 𝛽𝛽0 is included in 212 

the regression model, the model provides an estimate of the regional mean PDS parameter, and 213 

the estimate of the residual model error variance 𝜎𝜎�𝛿𝛿2 is then a measure of regional heterogeneity. 214 

The regional mean is, in general, different from the arithmetic mean since the GLS model weighs 215 

the estimated PDS parameters according to the error covariance matrix, hence giving less weight 216 

to more uncertain estimates and groups of sites that have higher inter-site correlations (Madsen 217 

and Rosbjerg, 1997b). If 𝜎𝜎�𝛿𝛿2 = 0, the region can be considered homogeneous and the observed 218 

variability of the PDS parameter estimates at the different sites in the region can be explained by 219 

sampling uncertainty. A residual model error variance larger than zero indicates a heterogeneous 220 

region, and one can then apply the GLS regression model with available covariate information to 221 

evaluate the potential of describing the regional variability. 222 

 223 

Different diagnostics are applied to evaluate the GLS regression models. Madsen & Rosbjerg 224 

(1997b) used the average prediction variance of the regression model estimates 𝜎𝜎�𝜃𝜃𝑖𝑖2   for all 225 

stations i = 1,2,…,M in the region 226 

 227 

𝜎𝜎�𝜃𝜃𝑖𝑖2 = 𝑦𝑦𝑖𝑖𝑇𝑇∑��̂�𝛽�𝑦𝑦𝑖𝑖 + 𝜎𝜎�𝛿𝛿2       ,𝑦𝑦𝑖𝑖 = (1  𝑥𝑥1𝑖𝑖  ⋯   𝑥𝑥𝑝𝑝𝑖𝑖) 
 

(5) 

 228 

where ∑��̂�𝛽� is the covariance matrix of the estimated regression parameters. The prediction 229 

variance includes both the sampling uncertainty of the estimated regression model parameters 230 

and the residual model error variance. When comparing different regression models, the model 231 
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with the smallest average prediction variance is preferred. The reduction in prediction variance 232 

(RPV) between a regression model with k explanatory variables, 𝜎𝜎�𝜃𝜃𝑖𝑖2 (𝑘𝑘), and the regional mean 233 

model, 𝜎𝜎�𝜃𝜃𝑖𝑖2 (0), can be used as a measure of the value of covariate information 234 

 235 

𝑅𝑅𝑅𝑅𝑉𝑉 =
∑ 𝜎𝜎�𝜃𝜃𝑖𝑖2 (0)𝜀𝜀
𝑖𝑖=1 − ∑ 𝜎𝜎�𝜃𝜃𝑖𝑖2 (𝑘𝑘)𝜀𝜀

𝑖𝑖=1
∑ 𝜎𝜎�𝜃𝜃𝑖𝑖2 (0)𝜀𝜀
𝑖𝑖=1

= 1 −
∑ 𝜎𝜎�𝜃𝜃𝑖𝑖2 (𝑘𝑘)𝜀𝜀
𝑖𝑖=1

∑ 𝜎𝜎�𝜃𝜃𝑖𝑖2 (0)𝜀𝜀
𝑖𝑖=1

 

 
(6) 

 236 

Note that RPV can become negative in the case where the inclusion of explanatory variables only 237 

provides a minor reduction in residual model error variance, which is smaller than the 238 

corresponding increase in the sampling uncertainty of the estimated regression model 239 

parameters. 240 

 241 

Reis et al. (2004) proposed a pseudo coefficient of determination 242 

 243 

𝑅𝑅2 = 1 −
𝜎𝜎�𝛿𝛿2(𝑘𝑘)
𝜎𝜎�𝛿𝛿2(0)

 

 

(7) 

where 𝜎𝜎�𝛿𝛿2(𝑘𝑘) and 𝜎𝜎�𝛿𝛿2(0) are the residual model error variances for, respectively, a regression 244 

model with k explanatory variables and the regional mean model. Note that if 𝜎𝜎�𝛿𝛿2(𝑘𝑘) = 0 then R2 245 

= 1 although the model is not perfect. In this case sampling errors account for the differences 246 

between the site specific PDS parameter estimates and the GLS regression model estimates. 247 

Compared to RPV, R2 only considers the reduction in residual model error variance by using 248 

covariate information. 249 

 250 
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Finally, the significance of the estimated regression parameters is evaluated using a standard t-251 

test. 252 

 253 

 254 

RESULTS 255 

 256 

Regional model 257 

For the Poisson rate parameter λ the GLS results show regional variability (𝜎𝜎�𝛿𝛿2(0) > 0) for all 258 

durations, and a part of this variability can be explained by MAP. The GLS regression models 259 

with MAP have smaller average prediction variances than the regional mean models. RPV ranges 260 

between 0.01 and 0.54 and R2 between 0.04 and 0.59 with the smallest values for the 261 

intermediate durations 30-360 minutes, and the largest values for the 24 and 48-hour durations. 262 

A t-test of the slope of the regression equation (�̂�𝛽1) shows that the relationship with MAP can be 263 

considered significant for all durations at a significance level of 5%, except for 60-minute 264 

duration where the significance level is 7%. Estimated GLS regression models for 1-hour and 265 

24-hour durations are shown in Figure 2. GLS regression results for all durations are summarised 266 

in Supplementary Material Table 1. 267 

 268 
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 269 

Figure 2  Regression model results. GLS regression model for the Poisson rate parameter λ 270 
with MAP as explanatory variable (top) and mean µ with µCGD as explanatory 271 
variable (bottom) for, respectively, 1-hour (left) and 24-hour (right) durations. Dotted 272 
lines represent the 95% confidence interval of the linear regression. 273 

 274 

For the mean value of threshold exceedances µ the GLS regression results show regional 275 

variability for all durations. For durations 3-48 hours a significant part of this variability can be 276 

explained by µCGD. For these durations RPV ranges between 0.05 and 0.44 and R2 between 0.17 277 

and 0.75, and the t-test shows that the relationship with µCGD is significant at a 5% level. The 278 

largest RPV, R2 and most significant slopes of the regression line are obtained for 12- and 24-279 

hour durations. For durations smaller than 3 hours there is no clear pattern in the relationship 280 

with µCGD. For some durations significant correlations are found, whereas for other durations the 281 

correlations are not significant and even result in poorer prediction variance compared to the 282 
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regional mean model (negative RPV for the 60-minute duration). For consistency, a regional 283 

mean model is applied for all durations smaller than 3 hours. Estimated GLS regression models 284 

for 1-hour and 24-hour durations are shown in Figure 2. GLS regression results for all durations 285 

are summarised in Supplementary Material Table 2. 286 

 287 

For the L-CV of threshold exceedances the GLS regression results indicate regional variability 288 

for all durations except for 6 hours. No covariate information has been found to explain this 289 

variability, and a regional mean model is applied for all durations. Results are summarised in 290 

Supplementary Material Table 3.  291 

 292 

Results of the regional model are shown in Figure 3. The figure shows estimated extreme 293 

intensities for 1 and 24-hour durations mapped on the CGD grid. It should be noted that the 294 

extreme intensities estimated from the regional model are point estimates and the maps in Figure 295 

3 show the estimates at the grid centre points as gridded values. The explanatory variables used 296 

in the regional model are mapped on the CGD grid in Figure 3 (top row). The spatial patterns of 297 

the estimated PDS parameters λ and µ correspond to the spatial patterns of, respectively, MAP 298 

and µCGD. For durations smaller than 3 hours the regional variability is only due to the variability 299 

in λ as explained by MAP (Figure 3, middle row), whereas for durations of 3-48 hours the 300 

regional variability in µ as described by µCGD  also contributes to the regional differences in the 301 

extreme intensities (Figure 3, bottom row). For smaller return periods the regional variability in 302 

λ has a relatively larger contribution to the regional variability of extreme intensities, whereas 303 

for larger return periods the regional variability in µ dominates.  304 
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 305 

Figure 3  Regional model results. Explanatory variables of the regional model (top row): MAP 306 
(left) and µGCD (right), and estimated 2-year and 100-year intensity for 1-hour 307 
duration (middle row) and 24-hour duration (bottom row). 308 

 309 

Figure 4 shows the range of the estimated IDF curves over Denmark for 2, 10 and 100-year 310 

return periods. The range is calculated as the minimum and maximum extreme intensity for the 311 

different durations from the CGD gridded estimates as shown in Figure 3. The relative range 312 

(range divided by the average) is smallest for durations up to 1 hour, reflecting the regional 313 

constant µ for these durations. For durations larger than 1 hour the relative range increases for 314 
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increasing duration caused by an increasing regional variability of µ and λ. For 24 and 48-hour 315 

durations the upper limit of the 2 and 10-year events are similar to the lower limit of, 316 

respectively, the 10 and 100-year events. 317 

 318 

Figure 4  IDF curves for 2-year (blue), 10-year (red) and 100-year (green) events based on the 319 
regional model. The coloured areas represent the variability over Denmark, and the 320 
black dotted lines the corresponding regional averages. 321 

 322 

Subsample analysis 323 

To evaluate the impact of the development in data availability over time as shown in Figure 1 the 324 

subsample of 31 stations that covers almost the entire observation period has been analysed 325 

separately using the same regional modelling approach. The regional model estimated from the 326 

subsample gives, in general, smaller estimates of extreme intensities. The difference between the 327 

two models is largest for durations up to 3 hours, and larger differences are seen for larger return 328 

periods (see Figure 5). The prediction variances of the extreme intensity estimates from the 329 

regional model are smaller for the model based on the subsample. This is illustrated in Figure 6 330 

for one location. The differences in prediction variances are largest for smaller durations and 331 

larger return periods. For 1-hour duration the uncertainty of the 2-year event estimate of the 332 
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regional model based on the full sample (relative standard deviation of 8.7%) is about twofold 333 

compared to the estimate based on the subsample (4.6%), and larger differences are seen for the 334 

100-year event estimate (23.6% and 9.2%, respectively). For the 24-hour duration the differences 335 

between the two models are smaller.  336 

 337 

 338 

Figure 5  Ratio of regional average intensity estimates based on data from the full sample (83 339 
stations) and the subsample (31 stations) for different durations and return periods T. 340 

 341 

 342 
Figure 6  Relative standard deviation (standard deviation divided by intensity estimate) at a 343 

location with MAP = 632 mm and µCGD = 28.3 mm for different return periods T 344 
using the regional model based on data from the full sample (83 stations) and the 345 
subsample (31 stations) for 1-hour (left) and 24-hour (right) durations. 346 
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For the Poisson parameter λ GLS regression results show, in general, larger R2 values for the 347 

subsample compared to the full sample, except for the intermediate durations 30-180 minutes. 348 

However, due to the smaller sample, the subsample has larger sampling uncertainties resulting in 349 

smaller RPV values for most durations. The estimated slope of the regression models are smaller 350 

for the subsample for all durations and is not significant (at a 5% level) for the durations 30-360 351 

minutes. In general, the subsample has a smaller range of λ-estimates over Denmark and smaller 352 

prediction uncertainties. The results are summarised in Supplementary Material Table 1 and 353 

Table 4. 354 

 355 

For the mean value of threshold exceedances µ results from the subsample analysis show that the 356 

relationship with µCGD is not significant for durations up to 3 hours where negative RPV values 357 

and non-significant slope estimates (at a 5% level) are obtained. For larger durations, slope 358 

estimates are significant for the subsample regressions but with smaller slope estimates (except 359 

for 12-hour duration where similar slope estimates are found). In general, the subsample results 360 

show smaller µ-estimates over Denmark. The subsample provides both smaller and larger 361 

prediction uncertainties, depending on duration, than those obtained from the full sample. The 362 

results are summarised in Supplementary Material Table 2 and Table 5. 363 

 364 

For the shape parameter in the regional GP distribution κ larger (less negative) shape parameters 365 

are obtained for the subsample, revealing lighter-tailed GP distributions. The subsample provides 366 

smaller prediction uncertainties for durations larger than 10 minutes, except for 6-hour duration. 367 

Results are summarised in Supplementary Material Table 3. 368 

 369 
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The analysis shows larger estimates of λ and µ in the full sample, which in combination with the 370 

increase in station-years included in the regional model indicate an increasing trend in λ and µ. 371 

These results correspond well with the findings of Gregersen et al. (2013) who analysed a subset 372 

of the rainfall data used in this study, including 70 stations with 10–31 years of observations in 373 

the period 1979–2009. They found a significant increasing trend of λ for all durations analysed 374 

(1, 3, 6, 12 and 24 hours). Increasing trends were also found for µ for all durations, but they were 375 

statistically significant only for 1 and 3-hour durations.  376 

 377 

Larger estimates of λ and µ, and smaller (more negative) regional GP shape parameters in the 378 

full sample all point towards larger intensity estimates as shown in Figure 5. The larger 379 

prediction uncertainties generally found for λ, µ and κ using the full sample indicate that the 380 

impact of non-stationarities is more important than the expected reduction in sampling 381 

uncertainty for increasing sample size. However, it could also reflect an increase in the spatial 382 

variability caused by adding additional stations in the analysis. It is very difficult to verify which 383 

causes are predominant due to the spatial and temporal heterogeneity of the data.  384 

 385 

Comparison with previous studies 386 

In the previous regional studies of Danish rainfall extremes (Madsen et al., 2002; 2009) it was 387 

also found that the Poisson rate is significantly correlated with MAP. In Supplementary Material  388 

Table 4 the range of λ-estimates over Denmark from the previous studies are compared to those 389 

obtained in the current study. A general increase in λ is seen, with more pronounced increases 390 

for smaller durations. It should be noted that in the studies by Madsen et al. (2002, 2009) a 391 
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different MAP was used based on data from the standard normal period 1961-1990 (Frich et al., 392 

1997). 393 

 394 

The regional variability of the mean value of threshold exceedances was in the previous studies 395 

described by defining sub-regions with a constant mean. In the first study by Madsen et al. 396 

(2002) a larger mean intensity was seen in the Copenhagen area for durations larger than 1 hour, 397 

with differences between the western and eastern Copenhagen area for some durations. A 398 

regional model was defined with three sub-regions, respectively, (i) Copenhagen East, (ii) 399 

Copenhagen West, and (iii) the rest of the country. In the subsequent study by Madsen et al. 400 

(2009) the regional model was revised. For durations up to 3 hours a regional mean model was 401 

applied for the whole country, whereas for larger durations significant differences between west 402 

and east Denmark were found and two sub-regions were defined, respectively, west and east of 403 

the Great Belt. In this study new covariate information in terms of the extreme value statistic 404 

µCGD is applied. For durations 3-48 hours a significant part of the regional variability can be 405 

described by µCGD, hence allowing a more elaborate assessment of the regional variability as 406 

compared to the previous studies. For durations smaller than 3 hours, the results of the current 407 

study confirm the use of a regional mean model as in the previous studies. Regional model 408 

estimates of µ from the different studies are compared in Supplementary Material Table 5. For 409 

durations up to 1 hour a general increase in the regional mean of µ is seen. For larger durations, 410 

the range of µ over Denmark shows an increasing trend. 411 

 412 

With respect to the L-CV the current study provides similar results as the previous study, 413 

supporting the use of a regional constant L-CV (GP shape parameter). Results from the different 414 
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studies are compared in Supplementary Material Table 3. For durations up to 6 hours there is, in 415 

general, a decreasing trend towards more negative shape parameters (heavier-tailed 416 

distributions), whereas for the largest durations 24-48 hours an increasing trend (lighter-tailed 417 

distributions) is seen. 418 

 419 

 420 
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Figure 7  Differences in [%] between estimates based on the regional model in Madsen et al. 421 
(2009) and the new regional model for 1-hour intensity (left) and 24-hour intensity 422 
(right). The figure shows from top to bottom changes in Poisson rate (frequency), 423 
mean intensity, and 2- and 100-year intensities. 424 

 425 

The regional model estimates of the current study and the study by Madsen et al. (2009) are 426 

compared in Figure 7. For the 1-hour intensity there is an increase in the Poisson rate, with a 427 

general increase from west (from about 2%) to east (up to about 30%). For the 24-hour intensity, 428 

a larger variation in the Poisson rate is seen, ranging from -25% to 58%. For the 1-hour intensity 429 

there is an increase in the mean intensity of about 6%, which is constant over Denmark since the 430 

models have a regional constant mean intensity. For the 24-hour intensity the change in mean 431 

intensity varies from -30% to 60%, with a regional pattern similar to µCGD (Figure 3, top right). 432 

For the 1-hour intensity, the changes in the extreme intensities follow the west-east pattern of the 433 

changes in the Poisson rate with an increase between 4% and 12% for the 2 and 100-year return 434 

periods. For the 24-hour intensity, the changes in the 2 and 100-year intensities follow the 435 

pattern of the changes in the mean intensity. There are both decreases and increases; from -13% 436 

to 27% for the 2-year event, and from -26% to 40% for the 100-year event. Main increases are 437 

seen in the northern part of Jutland, north-east Zealand, southern islands and Bornholm. 438 

 439 

 440 

DISCUSSION AND CONCLUSIONS 441 

 442 

A new regional model has been developed for estimation of IDF relationships of extreme rainfall 443 

in Denmark. The model is based on 50% more data than used in the previous regional analysis 444 

by Madsen et al. (2009) and uses new covariate information in terms of gridded rainfall statistics 445 

from a dense network of gauges with daily measurements (CGD). The analysis confirms 446 
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previous results regarding the spatial variability of the Poisson rate; that is, the rate increases for 447 

increasing MAP for all durations analysed between 1 minute and 48 hours. With respect to the 448 

mean value of threshold exceedances µ, significant correlation with the mean extreme intensity 449 

from CGD was found for durations between 3 and 48 hours. For durations below 3 hours µ is 450 

assumed constant over Denmark in accordance with the previous studies. Finally, the analysis of 451 

L-CV of the exceedance magnitudes confirms the previous studies, and a regional constant L-CV 452 

(GP shape parameter) is applied in the model. The use of the mean extreme intensity from CGD 453 

as covariate information in the regional model allows a more elaborate assessment of the 454 

regional variability and a more consistent estimation of extreme rainfall intensities in Denmark. 455 

Based on gridded maps of µCGD and MAP the IDF relationships can be estimated at an arbitrary 456 

site in Denmark. 457 

 458 

Compared to the previous study by Madsen et al. (2009) there is a general increase in extreme 459 

rainfall intensity for durations up to 1 hour caused by a general increase in the Poisson rate and 460 

the mean extreme intensity and a more negative GP shape parameter. For larger durations both 461 

increases and decreases are seen due to the correlation with µCGD compared to the division into 462 

two regions with constant mean extreme intensity in the previous study. 463 

 464 

To analyse the impacts of using the temporal heterogeneous dataset a subsample analysis was 465 

conducted including only stations that cover almost the entire observation period. The analysis 466 

showed that the relatively larger contribution of station-years in recent years combined with 467 

increases in λ and µ and decreasing (more negative) GP shape parameters give larger estimates 468 

of extreme intensities compared to including only records that cover the full observation period 469 
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in the regional model. The regional model based on the full sample has larger prediction 470 

uncertainty of intensity estimates than the model based on the subsample. This is due to the non-471 

stationarities in the data but may also reflect larger spatial variability in the full sample. 472 

 473 

Gregersen et al. (2015) analysed long records of daily rainfall dating back to 1874 and found a 474 

general increase in the Poisson rate but overlaid by a multi-decadal variability that indicated a 475 

cyclic behaviour. The increase seen in recent years is much larger than the long-term trend but 476 

may, at least to some extent, be attributed to the multi-decadal variability seen in the long 477 

records. Since it is currently not possible to attribute the recent increases to anthropogenic 478 

changes or natural variability, the regional model using the full sample provides the best estimate 479 

according to current knowledge of extreme rainfall characteristics and associated uncertainties. 480 

Rather than including the non-stationarities in the regional model implicitly as an additional 481 

source of uncertainty, a model that explicitly describes non-stationarities in the PDS parameters 482 

could be developed. This is currently being investigated. 483 

 484 
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SUPPLEMENTARY MATERIAL 590 

 591 

Table 1 GLS regression results for the Poisson rate parameter λ using MAP as explanatory 592 
variable. Reduction in average prediction variance RPV, pseudo R2, estimated slope 593 
of regression equation 𝜷𝜷�𝟏𝟏 (10-3 years-1/mm) with corresponding standard deviation 594 
(10-3 years-1/mm) in parenthesis, and t-test significance level α. 595 

Duration 
[min] 

83 stations 31 stations 

RPV R2 �̂�𝛽1 α RPV R2 �̂�𝛽1 α 

1 0.24 0.27 7.29 
(1.64) 

< 0.001 0.23 0.31 4.55 
(1.57) 

0.005 

2 0.19 0.22 6.63 
(1.68) 

< 0.001 0.27 0.40 4.08 
(1.37) 

0.004 

5 0.13 0.16 5.49 
(1.69) 

0.002 0.10 0.21 2.89 
(1.38) 

0.04 

10 0.10 0.13 5.88 
(1.91) 

0.003 0.09 0.18 3.29 
(1.55) 

0.04 

30 0.06 0.08 4.34 
(1.77) 

0.02 -0.04 0.04 1.99 
(1.53) 

0.20 

60 0.01 0.04 3.26 
(1.80) 

0.07 -0.08 0 1.39 
(1.59) 

0.38 

180 0.02 0.05 3.35 
(1.66) 

0.05 -0.07 0 1.48 
(1.67) 

0.38 

360 0.06 0.09 4.36 
(1.63) 

0.009 0.02 0.09 2.91 
(1.63) 

0.08 

720 0.11 0.15 5.52 
(1.60) 

0.001 0.15 0.23 4.25 
(1.56) 

0.008 

1440 0.30 0.33 8.85 
(1.58) 

< 0.001 0.46 0.55 7.39 
(1.50) 

< 0.001 

2880 0.54 0.59 12.4 
(1.47) 

< 0.001 0.66 0.73 11.0 
(1.61) 

< 0.001 

 596 

  597 
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Table 2 GLS regression results for the mean µ using µCGD as explanatory variable. Reduction 598 
in average prediction variance RPV, pseudo R2, estimated slope of regression 599 
equation 𝜷𝜷�𝟏𝟏 (µm/s/mm) with corresponding standard deviation (µm/s/mm) in 600 
parenthesis, and t-test significance level α.  601 

Duration 
[min] 

83 stations 31 stations 

RPV R2 �̂�𝛽1 α RPV R2 �̂�𝛽1 α 

1 0.01 0.08 2.09E-01 
(1.20E-01) 

0.09 -0.10 0 1.53E-01 
(1.63E-01) 

0.35 

2 0.05 0.15 2.13E-01 
(1.08E-01) 

0.05 -0.11 0.01 1.54E-01 
(1.47E-01) 

0.30 

5 0.16 0.28 2.17E-01 
(8.72E-02) 

0.01 -0.02 0.17 1.80E-01 
(1.17E-01) 

0.13 

10 0.04 0.15 1.28E-01 
(6.55E-02) 

0.06 -0.43 0.01 8.18E-02 
(8.12E-02) 

0.32 

30 0.05 0.12 9.12E-02 
(4.14E-02) 

0.03 -0.34 0 2.71E-02 
(5.02E-02) 

0.59 

60 -0.03 0.04 4.26E-02 
(2.81E-02) 

0.13 -0.46 0 2.10E-03 
(3.22E-02) 

0.95 

180 0.05 0.17 3.33E-02 
(1.28E-02) 

0.01 -0.09 0.25 2.89E-02 
(1.60E-02) 

0.07 

360 0.13 0.25 2.77E-02 
(8.10E-03) 

0.001 0.01 0.39 2.29E-02 
(9.90E-03) 

0.02 

720 0.31 0.60 1.94E-02 
(4.41E-03) 

< 0.001 0.40 1.00 1.95E-02 
(5.80E-03) 

0.001 

1440 0.44 0.75 1.35E-02 
(2.42E-03) 

< 0.001 0.26 0.79 1.09E-02 
(3.34E-03) 

0.002 

2880 0.13 0.27 5.26E-03 
(1.45E-03) 

< 0.001 -0.06 0.40 3.75E-03 
(1.88E-03) 

0.05 

 602 

 603 

  604 
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Table 3  GLS regression results for the shape parameter κ. Regional estimate of GP shape 605 
parameter and corresponding standard deviation in parenthesis for current and 606 
previous studies. 607 

Duration 
[min] 

1979-2012  

(83 stations) 

1979-2012 

(31 stations) 

1979-20051  

(66 stations) 

1979-19972  

(41 stations) 

1 -0.158 
(0.0767) 

-0.125 
(0.0591) 

-0.152 
(0.104) 

-0.132 
(0.103) 

2 -0.110 
(0.0681) 

-0.0803 
(0.0740) 

-0.0971 
(0.0621) 

-0.101 
(0.136) 

5 -0.0743 
(0.0399) 

-0.0549 
(0.0609) 

-0.0769 
(0.0209) 

-0.0616 
(0.0965) 

10 -0.122 
(0.0417) 

-0.107 
(0.0615) 

-0.116 
(0.0410) 

-0.0620 
(0.0286) 

30 -0.207 
(0.0500) 

-0.185 
(0.0193) 

-0.200 
(0.0350) 

-0.165 
(0.0274) 

60 -0.207 
(0.0733) 

-0.182 
(0.0267) 

-0.205 
(0.0615) 

-0.134 
(0.0309) 

180 -0.175 
(0.0768) 

-0.140 
(0.0248) 

-0.170 
(0.0333) 

-0.0806 
(0.0395) 

360 -0.180 
(0.0233) 

-0.174 
(0.0259) 

-0.189 
(0.0628) 

-0.155 
(0.0427) 

720 -0.137 
(0.0680) 

-0.107 
(0.0596) 

-0.145 
(0.0658) 

-0.134 
(0.0495) 

1440 -0.124 
(0.0644) 

-0.103 
(0.0299) 

-0.149 
(0.0945) 

-0.169 
(0.0479) 

2880 -0.0894 
(0.0681) 

-0.0754 
(0.0325) 

-0.105 
(0.0910) 

-0.106 
(0.109) 

1Madsen et al. (2009), 2Madsen et al. (2002) 608 

 609 

  610 
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Table 4  Range over Denmark of Poisson rate parameter λ (years-1) and corresponding 611 
standard deviation in parenthesis (years-1) with MAP as explanatory variable for 612 
current and previous studies. 613 

Duration 
[min] 

1979-2012  
(83 station)  

1979-2012  
(31 stations) 

1979-20051  
(66 stations) 

1979-19972  
(41 stations) 

1 3.13 – 6.10 
(0.628 – 0.752) 

3.43 – 5.29 
(0.406 – 0.571) 

2.74 – 5.35 
(0.539 – 0.614) 

2.63 – 4.36 
(0.482 – 0.609) 

2 3.23 – 5.93 
(0.658 – 0.784) 

3.50 – 5.16 
(0.314 – 0.467) 

2.82 – 5.02 
(0.528 – 0.599) 

2.60 – 4.21 
(0.280 – 0.406) 

5 3.27 – 5.50 
(0.661 – 0.786) 

3.51 – 4.69 
(0.324 – 0.475) 

2.73 – 4.77 
(0.540 – 0.610) 

2.36 – 4.00 
(0.323 – 0.436) 

10 3.62 – 6.01 
(0.756 – 0.897) 

3.86 – 5.20 
(0.378 – 0.543) 

3.09 – 5.12 
(0.557 – 0.629) 

2.63 – 4.30 
(0.398 – 0.512) 

30 3.43 – 5.19 
(0.678 – 0.811) 

3.68 – 4.49 
(0.379 – 0.540) 

2.88 – 4.57 
(0.568 – 0.640) 

2.43 – 4.30 
(0.471 – 0.586) 

60 3.47 – 4.79 
(0.675 – 0.811) 

3.64 – 4.21 
(0.394 – 0.560) 

2.88 – 4.42 
(0.583 – 0.655) 

2.50 – 4.16 
(0.478 – 0.592) 

180 3.02 – 4.39 
(0.590 – 0.719) 

3.26 – 3.86 
(0.436 – 0.604) 

2.77 – 4.15 
(0.562 – 0.636) 

2.56 – 3.82 
(0.464 – 0.576) 

360 2.56 – 4.33 
(0.591 – 0.716) 

2.77 – 3.96 
(0.433 – 0.594) 

2.32 – 4.07 
(0.511 – 0.579) 

2.16 – 4.00 
(0.350 – 0.442) 

720 2.08 – 4.33 
(0.593 – 0.713) 

2.26 – 3.99 
(0.422 – 0.575) 

1.82 – 3.85 
(0.481 – 0.548) 

1.66 – 4.11 
(0.285 – 0.377) 

1440 1.74 – 5.35 
(0.574 – 0.695) 

2.02 – 5.03 
(0.395 – 0.543) 

1.63 – 4.62 
(0.513 – 0.573) 

1.31 – 5.01 
(0.318 – 0.408) 

2880 1.57 – 6.61 
(0.498 – 0.614) 

1.87 – 6.34 
(0.436 – 0.594) 

1.67 – 5.94 
(0.482 – 0.538) 

1.40 – 5.88 
(0.354 – 0.453) 

1Madsen et al. (2009), 2Madsen et al. (2002) 614 
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Table 5  Range over Denmark of mean µ (µm/s) and corresponding standard deviation in 616 
parenthesis (µm/s) for current study using µCGD as explanatory variable and previous 617 
studies based on sub-regional divisions. 618 

Duration 
[min] 

1979-2012  

(83 station)  

1979-2012  

(31 stations) 

1979-20051  

(66 stations) 

1979-19972  

(41 stations) 

1 6.22 
(0.491) 

6.03 
(0.520) 

5.97 
(0.368) 

5.85 
(0.766) 

2 5.99 
(0.380) 

5.84 
(0.418) 

5.78 
(0.345) 

5.47 
(0.689) 

5 4.90 
(0.295) 

4.80 
(0.286) 

4.71 
(0.191) 

4.54 
(0.541) 

10 3.58 
(0.225) 

3.49 
(0.124) 

3.45 
(0.129) 

3.33 
(0.110) 

30 1.82 
(0.165) 

1.76 
(0.102) 

1.74 
(0.0572) 

1.61 
(0.0551) 

60 1.10 
(0.114) 

1.05 
(0.0582) 

1.03 
(0.0464) 

0.948 
(0.0354) 

180 0.410 – 0.608 
(0.0386 – 0.0595) 

0.405 – 0.577 
(0.0286 – 0.0658) 

0.466 
(0.0188) 

0.432 – 0.517 
(0.0246 – 0.0757) 

360 0.222 – 0.387 
(0.0247 – 0.0377) 

0.224 – 0.360 
(0.0172 – 0.0405) 

0.263 – 0.292 
(0.0244 – 0.0279) 

0.257 – 0.340 
(0.0181 – 0.0479) 

720 0.128 – 0.243 
(0.00956 – 0.0180) 

0.130 – 0.246 
(0.00775 – 0.0230) 

0.167 – 0.183 
(0.0203 – 0.0277) 

0.162 – 0.234 
(0.0130 – 0.0284) 

1440 0.0725 – 0.153 
(0.00505 – 0.00980) 

0.0757 – 0.140 
(0.00526 – 0.0136) 

0.0921 – 0.115 
(0.00755 – 0.0151) 

0.0940 – 0.131 
(0.00872 – 0.0218) 

2880 0.0489 – 0.0802 
(0.00460 – 0.00690) 

0.0507 – 0.0730 
(0.00381 – 0.00810) 

0.0551 – 0.0700 
(0.00436 – 0.00834) 

0.0581 – 0.0756 
(0.00499 – 0.0127) 

1Madsen et al. (2009), 2Madsen et al. (2002) 619 
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 622 

 623 
Figure 1 Location of the high-resolution rain gauges used in the study. 624 
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