66 research outputs found

    An addressable quantum dot qubit with fault-tolerant control fidelity

    Get PDF
    Exciting progress towards spin-based quantum computing has recently been made with qubits realized using nitrogen-vacancy (N-V) centers in diamond and phosphorus atoms in silicon, including the demonstration of long coherence times made possible by the presence of spin-free isotopes of carbon and silicon. However, despite promising single-atom nanotechnologies, there remain substantial challenges in coupling such qubits and addressing them individually. Conversely, lithographically defined quantum dots have an exchange coupling that can be precisely engineered, but strong coupling to noise has severely limited their dephasing times and control fidelities. Here we combine the best aspects of both spin qubit schemes and demonstrate a gate-addressable quantum dot qubit in isotopically engineered silicon with a control fidelity of 99.6%, obtained via Clifford based randomized benchmarking and consistent with that required for fault-tolerant quantum computing. This qubit has orders of magnitude improved coherence times compared with other quantum dot qubits, with T_2* = 120 mus and T_2 = 28 ms. By gate-voltage tuning of the electron g*-factor, we can Stark shift the electron spin resonance (ESR) frequency by more than 3000 times the 2.4 kHz ESR linewidth, providing a direct path to large-scale arrays of addressable high-fidelity qubits that are compatible with existing manufacturing technologies

    Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy

    Get PDF
    BACKGROUND: Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work we compare different classifier fusion methods for combining the individual classifiers. PRINCIPAL FINDINGS: The individual classifiers yielded similar performance, and all the combination approaches considered performed equally well. The gain in performance due to combining methods did not reach statistical significance compared to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600 instances compared to 2,700) the combination significantly outperformed the individual classifiers (p<0.01; paired one-sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance. Discovery of these therapy courses is a further hint for the robustness of the combined system. CONCLUSION: The combined EuResist prediction engine is freely available at http://engine.euresist.org

    {StructMAn}: {A}nnotation of Single-nucleotide Polymorphisms in the Structural Context

    No full text
    The next generation sequencing technologies produce unprecedented amounts of data on the genetic sequence of individual organisms. These sequences carry a substantial amount of variation that may or may be not related to a phenotype. Phenotypically important part of this variation often comes in form of protein-sequence altering (non-synonymous) single nucleotide variants (nsSNVs). Here we present StructMAn, a Web-based tool for annotation of human and non-human nsSNVs in the structural context. StructMAn analyzes the spatial location of the amino acid residue corresponding to nsSNVs in the three-dimensional (3D) protein structure relative to other proteins, nucleic acids and low molecular-weight ligands. We make use of all experimentally available 3D structures of query proteins, and also, unlike other tools in the field, of structures of proteins with detectable sequence identity to them. This allows us to provide a structural context for around 20% of all nsSNVs in a typical human sequencing sample, for up to 60% of nsSNVs in genes related to human diseases and for around 35% of nsSNVs in a typical bacterial sample. Each nsSNV can be visualized and inspected by the user in the corresponding 3D structure of a protein or protein complex. The StructMAn server is available at http://structman.mpi-inf.mpg.de

    Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies Against HIV

    No full text
    Despite the availability of antiretroviral combination therapies, success in drug treatment of HIV-infected patients is limited. One reason for therapy failure is the development of drug-resistant genetic variants. In principle, the viral genomic sequence provides resistance information and could thus guide the selection of an optimal drug combination. In practice however, the benefit of this procedure is impaired by (1) the difficulty in inferring the clinically relevant information from the genotype of the virus and (2) the restricted availability of this information. We have developed a secure platform for collaborative research aimed at optimizing anti-HIV therapies, called Arevir. A relational database schema was designed and implemented together with a web-based user interface. Our system provides a basis for monitoring patients, decision-support, and computational analyses. Thus, it merges clinical, diagnostic and bioinformatics efforts to exploit genomic and patient therapy data in clinical practice
    corecore