2,381 research outputs found
Absolute velocity measurements in sunspot umbrae
In sunspot umbrae, convection is largely suppressed by the strong magnetic
field. Previous measurements reported on negligible convective flows in umbral
cores. Based on this, numerous studies have taken the umbra as zero reference
to calculate Doppler velocities of the ambient active region. To clarify the
amount of convective motion in the darkest part of umbrae, we directly measured
Doppler velocities with an unprecedented accuracy and precision. We performed
spectroscopic observations of sunspot umbrae with the Laser Absolute Reference
Spectrograph (LARS) at the German Vacuum Tower Telescope. A laser frequency
comb enabled the calibration of the high-resolution spectrograph and absolute
wavelength positions. A thorough spectral calibration, including the
measurement of the reference wavelength, yielded Doppler shifts of the spectral
line Ti i 5713.9 {\AA} with an uncertainty of around 5 m s-1. The measured
Doppler shifts are a composition of umbral convection and magneto-acoustic
waves. For the analysis of convective shifts, we temporally average each
sequence to reduce the superimposed wave signal. Compared to convective
blueshifts of up to -350 m s-1 in the quiet Sun, sunspot umbrae yield a
strongly reduced convective blueshifts around -30 m s-1. {W}e find that the
velocity in a sunspot umbra correlates significantly with the magnetic field
strength, but also with the umbral temperature defining the depth of the
titanium line. The vertical upward motion decreases with increasing field
strength. Extrapolating the linear approximation to zero magnetic field
reproduces the measured quiet Sun blueshift. Simply taking the sunspot umbra as
a zero velocity reference for the calculation of photospheric Dopplergrams can
imply a systematic velocity error.Comment: 10 pages, 7 figures, 2 tables, Appendix with 5 figure
Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond
We present a simple construction method for Feller processes and a framework
for the generation of sample paths of Feller processes. The construction is
based on state space dependent mixing of L\'evy processes.
Brownian Motion is one of the most frequently used continuous time Markov
processes in applications. In recent years also L\'evy processes, of which
Brownian Motion is a special case, have become increasingly popular.
L\'evy processes are spatially homogeneous, but empirical data often suggest
the use of spatially inhomogeneous processes. Thus it seems necessary to go to
the next level of generalization: Feller processes. These include L\'evy
processes and in particular Brownian motion as special cases but allow spatial
inhomogeneities.
Many properties of Feller processes are known, but proving the very existence
is, in general, very technical. Moreover, an applicable framework for the
generation of sample paths of a Feller process was missing. We explain, with
practitioners in mind, how to overcome both of these obstacles. In particular
our simulation technique allows to apply Monte Carlo methods to Feller
processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the
generation of sample paths of Feller processe
Asymptotics of block Toeplitz determinants and the classical dimer model
We compute the asymptotics of a block Toeplitz determinant which arises in
the classical dimer model for the triangular lattice when considering the
monomer-monomer correlation function. The model depends on a parameter
interpolating between the square lattice () and the triangular lattice
(), and we obtain the asymptotics for . For we apply the
Szeg\"o Limit Theorem for block Toeplitz determinants. The main difficulty is
to evaluate the constant term in the asymptotics, which is generally given only
in a rather abstract form
Modeling the Emission Processes in Blazars
Blazars are the most violent steady/recurrent sources of high-energy
gamma-ray emission in the known Universe. They are prominent emitters of
electromagnetic radiation throughout the entire electromagnetic spectrum. The
observable radiation most likely originates in a relativistic jet oriented at a
small angle with respect to the line of sight. This review starts out with a
general overview of the phenomenology of blazars, including results from a
recent multiwavelength observing campaign on 3C279. Subsequently, issues of
modeling broadband spectra will be discussed. Spectral information alone is not
sufficient to distinguish between competing models and to constrain essential
parameters, in particular related to the primary particle acceleration and
radiation mechanisms in the jet. Short-term spectral variability information
may help to break such model degeneracies, which will require snap-shot
spectral information on intraday time scales, which may soon be achievable for
many blazars even in the gamma-ray regime with the upcoming GLAST mission and
current advances in Atmospheric Cherenkov Telescope technology. In addition to
pure leptonic and hadronic models of gamma-ray emission from blazars,
leptonic/hadronic hybrid models are reviewed, and the recently developed
hadronic synchrotron mirror model for TeV gamma-ray flares which are not
accompanied by simultaneous X-ray flares (``orphan TeV flares'') is revisited.Comment: Invited Review at "The Multimessenger Approach to Gamma-Ray Sources",
Barcelona, Spain, July 2006; submitted to Astrophysics and Space Science. 10
pages, including 6 eps figures. Uses Springer's ApSS macro
Metastable precursors during the oxidation of the Ru(0001) surface
Using density-functional theory, we predict that the oxidation of the
Ru(0001) surface proceeds via the accumulation of sub-surface oxygen in
two-dimensional islands between the first and second substrate layer. This
leads locally to a decoupling of an O-Ru-O trilayer from the underlying metal.
Continued oxidation results in the formation and stacking of more of these
trilayers, which unfold into the RuO_2(110) rutile structure once a critical
film thickness is exceeded. Along this oxidation pathway, we identify various
metastable configurations. These are found to be rather close in energy,
indicating a likely lively dynamics between them at elevated temperatures,
which will affect the surface chemical and mechanical properties of the
material.Comment: 11 pages including 9 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Composition, structure and stability of RuO_2(110) as a function of oxygen pressure
Using density-functional theory (DFT) we calculate the Gibbs free energy to
determine the lowest-energy structure of a RuO_2(110) surface in thermodynamic
equilibrium with an oxygen-rich environment. The traditionally assumed
stoichiometric termination is only found to be favorable at low oxygen chemical
potentials, i.e. low pressures and/or high temperatures. At realistic O
pressure, the surface is predicted to contain additional terminal O atoms.
Although this O excess defines a so-called polar surface, we show that the
prevalent ionic model, that dismisses such terminations on electrostatic
grounds, is of little validity for RuO_2(110). Together with analogous results
obtained previously at the (0001) surface of corundum-structured oxides, these
findings on (110) rutile indicate that the stability of non-stoichiometric
terminations is a more general phenomenon on transition metal oxide surfaces.Comment: 12 pages including 5 figures. Submitted to Phys. Rev. B. Related
publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
Non-Gaussian statistics of electrostatic fluctuations of hydration shells
We report the statistics of electric field fluctuations produced by SPC/E
water inside a Kihara solute given as a hard-sphere core with a Lennard-Jones
layer at its surface. The statistics of electric field fluctuations, obtained
from numerical simulations, are studied as a function of the magnitude of a
point dipole placed close to the solute-water interface. The free energy
surface as a function of the electric field projected on the dipole direction
shows a cross-over with the increasing dipole magnitude. While it is a
single-well harmonic function at low dipole values, it becomes a double-well
surface at intermediate dipole moment magnitudes, transforming to a single-well
surface, with a non-zero minimum position, at still higher dipoles. A broad
intermediate region where the interfacial waters fluctuate between the two
minima is characterized by intense field fluctuations, with non-Gaussian
statistics and the variance far exceeding the linear-response expectations. The
excited state of the surface water is found to be lifted above the ground state
by the energy required to break approximately two hydrogen bonds. This state is
pulled down in energy by the external electric field of the solute dipole,
making it readily accessible to thermal excitations. The excited state is a
localized surface defect in the hydrogen-bond network creating a stress in the
nearby network, but otherwise relatively localized in the region closest to the
solute dipole
Entropy and Correlation Functions of a Driven Quantum Spin Chain
We present an exact solution for a quantum spin chain driven through its
critical points. Our approach is based on a many-body generalization of the
Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The
resulting nonequilibrium state of the system, while being a pure quantum state,
has local properties of a mixed state characterized by finite entropy density
associated with Kibble-Zurek defects. The entropy, as well as the finite spin
correlation length, are functions of the rate of sweep through the critical
point. We analyze the anisotropic XY spin 1/2 model evolved with a full
many-body evolution operator. With the help of Toeplitz determinants calculus,
we obtain an exact form of correlation functions. The properties of the evolved
system undergo an abrupt change at a certain critical sweep rate, signaling
formation of ordered domains. We link this phenomenon to the behavior of
complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg
- …