1,954 research outputs found

    Stationary point approach to the phase transition of the classical XY chain with power-law interactions

    Full text link
    The stationary points of the Hamiltonian H of the classical XY chain with power-law pair interactions (i.e., decaying like r^{-{\alpha}} with the distance) are analyzed. For a class of "spinwave-type" stationary points, the asymptotic behavior of the Hessian determinant of H is computed analytically in the limit of large system size. The computation is based on the Toeplitz property of the Hessian and makes use of a Szeg\"o-type theorem. The results serve to illustrate a recently discovered relation between phase transitions and the properties of stationary points of classical many-body Hamiltonian functions. In agreement with this relation, the exact phase transition energy of the model can be read off from the behavior of the Hessian determinant for exponents {\alpha} between zero and one. For {\alpha} between one and two, the phase transition is not manifest in the behavior of the determinant, and it might be necessary to consider larger classes of stationary points.Comment: 9 pages, 6 figure

    A New Model for the Hard Time Lags in Black Hole X-Ray Binaries

    Get PDF
    The time-dependent Comptonized output of a cool soft X-ray source drifting inward through an inhomogeneous hot inner disk or corona is numerically simulated. We propose that this scenario can explain from first principles the observed trends in the hard time lags and power spectra of the rapid aperiodic variability of the X-ray emission of Galactic black-hole candidates.Comment: 10 pages, including 2 figures; uses epsf.sty, rotate.sty; accepted for ApJ Letter

    Conversion of relativistic pair energy into radiation in the jets of active galactic nuclei

    Get PDF
    It is generally accepted that relativistic jet outflows power the nonthermal emission from active galactic nuclei (AGN). The composition of these jets -- leptonic versus hadronic -- is still under debate. We investigate the microphysical details of the conversion process of the kinetic energy in collimated relativistic pair outflows into radiation through interactions with the ambient interstellar medium. Viewed from the coordinate system comoving with the pair outflow, the interstellar protons and electrons represent a proton-electron beam propagating with relativistic speed in the pair plasma. We demonstrate that the beam excites both electrostatic and low-frequency magnetohydrodynamic Alfven-type waves via a two-stream instability in the pair background plasma, and we calculate the time evolution of the distribution functions of the beam particles and the generated plasma wave turbulence power spectra. For standard AGN jet outflow and environment parameters we show that the initial beam distributions of interstellar protons and electrons quickly relax to plateau-distributions in parallel momentum, transferring thereby one-half of the initial energy density of the beam particles to electric field fluctuations of the generated electrostatic turbulence. On considerably longer time scales, the plateaued interstellar electrons and protons will isotropise by their self-generated transverse turbulence and thus be picked-up in the outflow pair plasma. These longer time scales are also characteristic for the development of transverse hydromagnetic turbulence from the plateaued electrons and protons. This hydromagnetic turbulence upstream and downstream is crucial for diffusive shock acceleration to operate at external or internal shocks associated with pair outflows.Comment: A&A in pres

    The long-term optical spectral variability of BL Lacertae

    Full text link
    We present the results from a study of the long-term optical spectral variations of BL Lacertae, using the long and well-sampled B and R-band light curves of the Whole Earth Blazar Telescope (WEBT) collaboration, binned on time intervals of 1 day. The relation between spectral slope and flux (the spectrum gets bluer as the source flux increases) is well described by a power-law model, although there is significant scatter around the best-fitting model line. To some extent, this is due to the spectral evolution of the source (along well-defined loop-like structures) during low-amplitude events, which are superimposed on the major optical flares, and evolve on time scales of a few days. The "bluer-when-brighter" mild chromatism of the long-term variations of the source can be explained if the flux increases/decreases faster in the B than in the R band. The B and R-band variations are well correlated, with no significant, measurable delays larger than a few days. On the other hand, we find that the spectral variations lead those in the flux light curves by ~ 4 days. Our results can be explained in terms of Doppler factor variations due to changes in the viewing angle of a curved and inhomogeneous emitting jet.Comment: 7 pages, 5 figures, accepted for publication in A&

    H.E.S.S. discovery of very-high-energy gamma-ray emission of PKS 1440-389

    Full text link
    Blazars are the most abundant class of known extragalactic very-high-energy (VHE, E>100 GeV) gamma-ray sources. However, one of the biggest difficulties in investigating their VHE emission resides in their limited number, since less than 60 of them are known by now. In this contribution we report on H.E.S.S. observations of the BL Lac object PKS 1440-389. This source has been selected as target for H.E.S.S. based on its high-energy gamma-ray properties measured by Fermi-LAT. The extrapolation of this bright, hard-spectrum gamma-ray blazar into the VHE regime made a detection on a relatively short time scale very likely, despite its uncertain redshift. H.E.S.S. observations were carried out with the 4-telescope array from February to May 2012 and resulted in a clear detection of the source. Contemporaneous multi-wavelength data are used to construct the spectral energy distribution of PKS 1440-389 which can be described by a simple one-zone synchrotron-self Compton model.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherland

    New nonlinear dielectric materials: Linear electrorheological fluids under the influence of electrostriction

    Full text link
    The usual approach to the development of new nonlinear dielectric materials focuses on the search for materials in which the components possess an inherently large nonlinear dielectric response. In contrast, based on thermodynamics, we have presented a first-principles approach to obtain the electrostriction-induced effective third-order nonlinear susceptibility for the electrorheological (ER) fluids in which the components have inherent linear, rather than nonlinear, responses. In detail, this kind of nonlinear susceptibility is in general of about the same order of magnitude as the compressibility of the linear ER fluid at constant pressure. Moreover, our approach has been demonstrated in excellent agreement with a different statistical method. Thus, such linear ER fluids can serve as a new nonlinear dielectric material.Comment: 11 page

    The spectrum of large powers of the Laplacian in bounded domains

    Full text link
    We present exact results for the spectrum of the Nth power of the Laplacian in a bounded domain. We begin with the one dimensional case and show that the whole spectrum can be obtained in the limit of large N. We also show that it is a useful numerical approach valid for any N. Finally, we discuss implications of this work and present its possible extensions for non integer N and for 3D Laplacian problems.Comment: 13 pages, 2 figure

    Photon-Photon Absorption of Very High Energy Gamma-Rays from Microquasars: Application to LS 5039

    Full text link
    Very high energy (VHE) gamma-rays have recently been detected from the Galactic black-hole candidate and microquasar LS 5039. A plausible site for the production of these VHE gamma-rays is the region close to the mildly relativistic outflow. However, at distances comparable to the binary separation, the intense photon field of the stellar companion will lead to substantial gamma-gamma absorption of VHE gamma-rays. If the system is viewed at a substantial inclination (i > 0), this absorption feature will be modulated on the orbital period of the binary as a result of a phase-dependent stellar-radiation intensity and pair-production threshold. We apply our results to LS 5039 and find that (1) gamma-gamma absorption effects will be substantial if the photon production site is located at a distance from the central compact object of the order of the binary separation (~ 2.5e12 cm) or less; (2) the gamma-gamma absorption depth will be largest at a few hundred GeV, leading to a characteristic absorption trough; (3) the gamma-gamma absorption feature will be strongly modulated on the orbital period of the binary, characterized by a spectral hardening accompanying periodic dips of the VHE gamma-ray flux; and (4) gamma rays can escape virtually unabsorbed, even from within ~ 10^{12} cm, when the star is located behind the production site as seen by the observer.Comment: Submitted to ApJ Letters. AASTeX, 12 ms pages, including 4 eps figure

    The ultraluminous X-ray source NGC 1313 X-2 - Its optical counterpart and environment

    Full text link
    NGC 1313 X-2 is one of the brightest ultraluminous X-ray sources in the sky, at both X-ray and optical wavelengths; therefore, quite a few studies of available ESO VLT and HST data have appeared in the literature. Here, we present our analysis of VLT/FORS1 and HST/ACS photometric data, confirming the identification of the B ~ 23 mag blue optical counterpart. We show that the system is part of a poor cluster with an age of 20 Myr, leading to an upper mass limit of some 12 M_sun for the mass donor. We attribute the different results with respect to earlier studies to the use of isochrones in the F435W and F555W HST/ACS photometric system that appear to be incompatible with the corresponding Johnson B and V isochrones. The counterpart exhibits significant photometric variability of about 0.2 mag amplitude, both between the two HST observations and during the one month of monitoring with the VLT. This includes variability within one night and suggests that the light is dominated by the accretion disk in the system and not by the mass donor.Comment: 13 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic
    • …
    corecore