32 research outputs found

    Cu-O network-dependent core-hole screening in low-dimensional cuprate systems: a high-resolution X-ray photoemission study

    Get PDF
    We present an experimental study of the dynamics of holes in the valence bands of zero-, one-, and two-dimensional undoped model cuprates, as expressed via the screening of a Cu 2p core hole. The response depends strongly upon the dimensionality and the details of the Cu-O-Cu network geometry and clearly goes beyond the present theoretical state-of-the-art description within the three-band d-p model

    The dynamics of a hole in a CuO_4 plaquette: electron energy-loss spectroscopy of Li_2CuO_2

    Get PDF
    We have measured the energy and momentum dependent loss function of Li_2CuO_2 single crystals by means of electron energy-loss spectroscopy in transmission. Using the same values for the model parameters, the low-energy features of the spectrum as well as published Cu 2p_(3/2) x-ray photoemission data of Li_2CuO_2 are well described by a cluster model that consists of a single CuO_4 plaquette only. This demonstrates that charge excitations in Li_2CuO_2 are strongly localized.Comment: 5 pages, 5 figure

    X-ray Photoemission Study of the Infinite-Layer Cuprate Superconductor Sr0.9La0.1CuO2

    Full text link
    The electron-doped infinite-layer superconductor Sr0.9La0.1CuO2 is studied with x-ray photoemission spectroscopy (XPS). A nonaqueous chemical etchant is shown to effectively remove contaminants and to yield surfaces from which signals intrinsic to the superconductor dominate. These data are compared to measurements from hole-doped La1.85Sr0.15CuO4, from undoped La2CuO4, and from electron-doped Nd1.85Ce0.15CuO4-d. The Cu 2p core level is consistent with a lower value of the O 2p to Cu 3d charge transfer energy D than in hole-doped cuprates. A clear Fermi edge is observed in the valence band region.Comment: 21 pages, 6 figures; minor clarifications added; accepted for Journal of Physics: Condensed Matte

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    Cu-O network-dependent core-hole screening in low-dimensional cuprate systems: A high-resolution x-ray photoemission study

    Get PDF
    We present an experimental study of the dynamics of holes in the valence bands of zero-, one-, and two-dimensional undoped model cuprates, as expressed via the screening of a Cu 2p core hole. The response depends strongly upon the dimensionality and the details of the Cu-O-Cu network geometry and clearly goes beyond the present theoretical state-of-the-art description within the three-band d-p model
    corecore