9 research outputs found
Increased azithromycin susceptibility of multidrug-resistant gram-negative bacteria on RPMI-1640 agar assessed by disk diffusion testing
Increasing antibiotic resistances and a lack of new antibiotics render the treatment of Gram-negative bacterial infections increasingly difficult. Therefore, additional approaches are being investigated. Macrolides are not routinely used against Gram-negative bacteria due to lack of evidence of in vitro effectiveness. However, it has been shown that Pseudomonas spp. are susceptible to macrolides in liquid RPMI-1640 and clinical data suggest improvement in patients' outcomes. So far, these findings have been hardly applicable to the clinical setting due to lack of routine low-complexity antimicrobial susceptibility testing (AST) for macrolides. We therefore optimized and compared broth microdilution and disk diffusion AST. Multidrug-resistant Gram-negative bacteria (Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae, Pseudomonas aeruginosa) were tested for azithromycin susceptibility by disk diffusion and broth microdilution in Mueller-Hinton and RPMI-1640 media. Azithromycin susceptibility of Enterobacteriaceae and a subgroup of P. aeruginosa increased significantly on RPMI-1640 agar compared to Mueller-Hinton agar. Further, a significant correlation (Kendall, Ï, p) of zone diameters and minimal inhibitory concentrations (MICs) was found on RPMI-1640 agar for E. coli (-0.4279, 0.0051), E. cloacae (-0.3783, 0.0237) and P. aeruginosa (-0.6477, <0.0001). Performing routine disk diffusion AST on RPMI-1640 agar may lead to the identification of additional therapeutic possibilities for multidrug-resistant bacterial infections in the routine clinical diagnostic setting
MHC class II-deficient mice allow functional human CD4 T-cell development
Humanized mouse models have been developed to study cell-mediated immune responses to human pathogens in vivo. How immunocompetent human T cells are selected in a murine thymus in such humanized mice remains poorly explored. To gain insights into this mechanism, we investigated the differentiation of human immune compartments in mouse MHC class II-deficient immune-compromised mice (humanized Ab0 mice). We observed a strong reduction in human CD4 T-cell development but despite this reduction Ab0 mice had no disadvantage during Epstein-Barr virus (EBV) infection. Viral loads were equally well controlled in humanized Ab0 mice compared to humanized NSG mice, and improved T-cell recognition of autologous EBV-transformed B cells was observed, especially with respect to cytotoxicity. MHC class II blocking experiments with CD4 T cells from humanized Ab0 mice demonstrated MHC class II restriction of lymphoblastoid cell line recognition. These findings suggest that a small number of CD4 T cells in humanized mice can be solely selected on human MHC class II molecules, presumably expressed by reconstituted human immune cells, leading to improved effector functions
KSHV infection drives poorly cytotoxic CD56-negative natural killer cell differentiation in vivo upon KSHV/EBV dual infection
Funding Information: This research was supported in part by Cancer Research Switzerland , Switzerland ( KFS-4091-02-2017 ); KFSP-PrecisionMS and HMZ ImmunoTargET of the University of Zurich , Switzerland; the Cancer Research Center Zurich , Switzerland; the Vontobel Foundation , Switzerland; the Baugarten Foundation , Switzerland; the Sobek Foundation , Germany; the Swiss Vaccine Research Institute , Switzerland; Roche , Switzerland; Novartis , Switzerland; and the Swiss National Science Foundation , Switzerland ( 310030B_182827 and CRSII5_180323 ). A.M.M. was funded by a National Institutes of Health , United States, grant ( R01 CA189806 ). N.C. was supported by a career advancement grant from the University of Zurich , Switzerland ( FK-18-026 ). D.M. and M.B. were supported by MD-PhD fellowships from the Swiss National Science Foundation , Switzerland, and the Swiss Academy of Medical Sciences , Switzerland ( 323530_145247 and 323630_19938 ).Peer reviewedPublisher PD
Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery
Aims We identified 10 patients with disseminated Mycobacterium chimaera infections subsequent to open-heart surgery at three European Hospitals. Infections originated from the heater-cooler unit of the heart-lung machine. Here we describe clinical aspects and treatment course of this novel clinical entity. Methods and results Interdisciplinary care and follow-up of all patients was documented by the study team. Patients' characteristics, clinical manifestations, microbiological findings, and therapeutic measures including surgical reinterventions were reviewed and treatment outcomes are described. The 10 patients comprise a 1-year-old child and nine adults with a median age of 61 years (range 36-76 years). The median duration from cardiac surgery to diagnosis was 21 (range 5-40) months. All patients had prosthetic material-associated infections with either prosthetic valve endocarditis, aortic graft infection, myocarditis, or infection of the prosthetic material following banding of the pulmonary artery. Extracardiac manifestations preceded cardiovascular disease in some cases. Despite targeted antimicrobial therapy, M. chimaera infection required cardiosurgical reinterventions in eight patients. Six out of 10 patients experienced breakthrough infections, of which four were fatal. Three patients are in a post-treatment monitoring period. Conclusion Healthcare-associated infections due to M. chimaera occurred in patients subsequent to cardiac surgery with extracorporeal circulation and implantation of prosthetic material. Infections became clinically apparent after a time lag of months to years. Mycobacterium chimaera infections are easily missed by routine bacterial diagnostics and outcome is poor despite long-term antimycobacterial therapy, probably because biofilm formation hinders eradication of pathogen
Co-Infection of the Epstein–Barr Virus and the Kaposi Sarcoma-Associated Herpesvirus
The two human tumor viruses, Epstein–Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future
Co-Infection of the EpsteinâBarr Virus and the Kaposi Sarcoma-Associated Herpesvirus
The two human tumor viruses, EpsteinâBarr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV), have been mostly studied in isolation. Recent studies suggest that co-infection with both viruses as observed in one of their associated malignancies, namely primary effusion lymphoma (PEL), might also be required for KSHV persistence. In this review, we discuss how EBV and KSHV might support each other for persistence and lymphomagenesis. Moreover, we summarize what is known about their innate and adaptive immune control which both seem to be required to ensure asymptomatic persistent co-infection with these two human tumor viruses. A better understanding of this immune control might allow us to prepare for vaccination against EBV and KSHV in the future
Increased Azithromycin Susceptibility of Multidrug-Resistant Gram-Negative Bacteria on RPMI-1640 Agar Assessed by Disk Diffusion Testing.
Increasing antibiotic resistances and a lack of new antibiotics render the treatment of Gram-negative bacterial infections increasingly difficult. Therefore, additional approaches are being investigated. Macrolides are not routinely used against Gram-negative bacteria due to lack of evidence of in vitro effectiveness. However, it has been shown that Pseudomonas spp. are susceptible to macrolides in liquid RPMI-1640 and clinical data suggest improvement in patients' outcomes. So far, these findings have been hardly applicable to the clinical setting due to lack of routine low-complexity antimicrobial susceptibility testing (AST) for macrolides. We therefore optimized and compared broth microdilution and disk diffusion AST. Multidrug-resistant Gram-negative bacteria () were tested for azithromycin susceptibility by disk diffusion and broth microdilution in Mueller-Hinton and RPMI-1640 media. Azithromycin susceptibility of Enterobacteriaceae and a subgroup of increased significantly on RPMI-1640 agar compared to Mueller-Hinton agar. Further, a significant correlation (Kendall, Ï, ) of zone diameters and minimal inhibitory concentrations (MICs) was found on RPMI-1640 agar for (-0.4279, 0.0051), (-0.3783, 0.0237) and (-0.6477, <0.0001). Performing routine disk diffusion AST on RPMI-1640 agar may lead to the identification of additional therapeutic possibilities for multidrug-resistant bacterial infections in the routine clinical diagnostic setting
Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery
Aims We identified 10 patients with disseminated Mycobacterium chimaera infections subsequent to open-heart surgery at three European Hospitals. Infections originated from the heaterâcooler unit of the heartâlung machine. Here we describe clinical aspects and treatment course of this novel clinical entity. Methods and results Interdisciplinary care and follow-up of all patients was documented by the study team. Patientsâ characteristics, clinical manifestations, microbiological findings, and therapeutic measures including surgical reinterventions were reviewed and treatment outcomes are described. The 10 patients comprise a 1-year-old child and nine adults with a median age of 61 years (range 36â76 years). The median duration from cardiac surgery to diagnosis was 21 (range 5â40) months. All patients had prosthetic material-associated infections with either prosthetic valve endocarditis, aortic graft infection, myocarditis, or infection of the prosthetic material following banding of the pulmonary artery. Extracardiac manifestations preceded cardiovascular disease in some cases. Despite targeted antimicrobial therapy, M. chimaera infection required cardiosurgical reinterventions in eight patients. Six out of 10 patients experienced breakthrough infections, of which four were fatal. Three patients are in a post-treatment monitoring period. Conclusion Healthcare-associated infections due to M. chimaera occurred in patients subsequent to cardiac surgery with extracorporeal circulation and implantation of prosthetic material. Infections became clinically apparent after a time lag of months to years. Mycobacterium chimaera infections are easily missed by routine bacterial diagnostics and outcome is poor despite long-term antimycobacterial therapy, probably because biofilm formation hinders eradication of pathogens