1,400 research outputs found
Stable splitting of bivariate spline spaces by Bernstein-Bézier methods
We develop stable splitting of the minimal determining sets for the spaces of bivariate C1 splines on triangulations, including a modified Argyris space, Clough-Tocher, Powell-Sabin and quadrilateral macro-element spaces. This leads to the stable splitting of the corresponding bases as required in Böhmer's method for solving fully nonlinear elliptic PDEs on polygonal domains
Bounds on the basic physical parameters for anisotropic compact general relativistic objects
We derive upper and lower limits for the basic physical parameters
(mass-radius ratio, anisotropy, redshift and total energy) for arbitrary
anisotropic general relativistic matter distributions in the presence of a
cosmological constant. The values of these quantities are strongly dependent on
the value of the anisotropy parameter (the difference between the tangential
and radial pressure) at the surface of the star. In the presence of the
cosmological constant, a minimum mass configuration with given anisotropy does
exist. Anisotropic compact stellar type objects can be much more compact than
the isotropic ones, and their radii may be close to their corresponding
Schwarzschild radii. Upper bounds for the anisotropy parameter are also
obtained from the analysis of the curvature invariants. General restrictions
for the redshift and the total energy (including the gravitational
contribution) for anisotropic stars are obtained in terms of the anisotropy
parameter. Values of the surface redshift parameter greater than two could be
the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ
A new two-sphere singularity in general relativity
The Florides solution, proposed as an alternative to the interior
Schwarzschild solution, represents a static and spherically symmetric geometry
with vanishing radial stresses. It is regular at the center, and is matched to
an exterior Schwarzschild solution. The specific case of a constant energy
density has been interpreted as the field inside an Einstein cluster. In this
work, we are interested in analyzing the geometry throughout the permitted
range of the radial coordinate without matching it to the Schwarzschild
exterior spacetime at some constant radius hypersurface. We find an interesting
picture, namely, the solution represents a three-sphere, whose equatorial
two-sphere is singular, in the sense that the curvature invariants and the
tangential pressure diverge. As far as we know, such singularities have not
been discussed before. In the presence of a large negative cosmological
constant (anti-de Sitter) the singularity is removed.Comment: 17 pages, 3 figure
Debye relaxation and 250 K anomaly in glass forming monohydroxy alcohols
A previous dielectric, near-infrared (NIR), and nuclear magnetic resonance
study on the hydrogen-bonded liquid 2-ethyl-1-hexanol [C. Gainaru et al., Phys.
Rev. Lett. 107, 118304 (2011)] revealed anomalous behavior in various static
quantities near 250 K. To check whether corresponding observations can be made
for other monohydroxy alcohols as well, these experimental methods were applied
to such substances with 5, 6, 7, 8, and 10 carbon atoms in their molecular
backbone. All studied liquids exhibit a change of behavior near 250 K which is
tentatively ascribed to effects of hydrogen bond cooperativity. By analyzing
the NIR band intensities, a linear cluster size is derived that agrees with
estimates from dielectric spectroscopy. All studied alcohols, except
4-methyl-3-heptanol, display a dominant Debye-like peak. Furthermore, neat
2-ethyl-1-butanol exhibits a well resolved structural relaxation in its
dielectric loss spectrum which so far has only been observed for diluted
monohydroxy alcohols.Comment: 39 pages including 12 figure
Zero Energy of Plane-Waves for ELKOs
We consider the ELKO field in interaction through contorsion with its own
spin density, and we investigate the form of the consequent autointeractions;
to do so we take into account the high-density limit and find plane wave
solutions: such plane waves give rise to contorsional autointeractions for
which the Ricci metric curvature vanishes and therefore the energy density is
equal to zero identically. Consequences are discussed.Comment: 7 page
- …