1,173 research outputs found

    Bounds on the basic physical parameters for anisotropic compact general relativistic objects

    Get PDF
    We derive upper and lower limits for the basic physical parameters (mass-radius ratio, anisotropy, redshift and total energy) for arbitrary anisotropic general relativistic matter distributions in the presence of a cosmological constant. The values of these quantities are strongly dependent on the value of the anisotropy parameter (the difference between the tangential and radial pressure) at the surface of the star. In the presence of the cosmological constant, a minimum mass configuration with given anisotropy does exist. Anisotropic compact stellar type objects can be much more compact than the isotropic ones, and their radii may be close to their corresponding Schwarzschild radii. Upper bounds for the anisotropy parameter are also obtained from the analysis of the curvature invariants. General restrictions for the redshift and the total energy (including the gravitational contribution) for anisotropic stars are obtained in terms of the anisotropy parameter. Values of the surface redshift parameter greater than two could be the main observational signature for anisotropic stellar type objects.Comment: 18 pages, no figures, accepted for publication in CQ

    Minimum mass-radius ratio for charged gravitational objects

    Get PDF
    We rigorously prove that for compact charged general relativistic objects there is a lower bound for the mass-radius ratio. This result follows from the same Buchdahl type inequality for charged objects, which has been extensively used for the proof of the existence of an upper bound for the mass-radius ratio. The effect of the vacuum energy (a cosmological constant) on the minimum mass is also taken into account. Several bounds on the total charge, mass and the vacuum energy for compact charged objects are obtained from the study of the Ricci scalar invariants. The total energy (including the gravitational one) and the stability of the objects with minimum mass-radius ratio is also considered, leading to a representation of the mass and radius of the charged objects with minimum mass-radius ratio in terms of the charge and vacuum energy only.Comment: 19 pages, accepted by GRG, references corrected and adde

    Can dark matter be a Bose-Einstein condensate?

    Full text link
    We consider the possibility that the dark matter, which is required to explain the dynamics of the neutral hydrogen clouds at large distances from the galactic center, could be in the form of a Bose-Einstein condensate. To study the condensate we use the non-relativistic Gross-Pitaevskii equation. By introducing the Madelung representation of the wave function, we formulate the dynamics of the system in terms of the continuity equation and of the hydrodynamic Euler equations. Hence dark matter can be described as a non-relativistic, Newtonian Bose-Einstein gravitational condensate gas, whose density and pressure are related by a barotropic equation of state. In the case of a condensate with quartic non-linearity, the equation of state is polytropic with index n=1n=1. To test the validity of the model we fit the Newtonian tangential velocity equation of the model with a sample of rotation curves of low surface brightness and dwarf galaxies, respectively. We find a very good agreement between the theoretical rotation curves and the observational data for the low surface brightness galaxies. The deflection of photons passing through the dark matter halos is also analyzed, and the bending angle of light is computed. The bending angle obtained for the Bose-Einstein condensate is larger than that predicted by standard general relativistic and dark matter models. Therefore the study of the light deflection by galaxies and the gravitational lensing could discriminate between the Bose-Einstein condensate dark matter model and other dark matter models.Comment: 20 pages, 7 figures, accepted for publication in JCAP, references adde

    Solar system tests of brane world models

    Full text link
    The classical tests of general relativity (perihelion precession, deflection of light, and the radar echo delay) are considered for the Dadhich, Maartens, Papadopoulos and Rezania (DMPR) solution of the spherically symmetric static vacuum field equations in brane world models. For this solution the metric in the vacuum exterior to a brane world star is similar to the Reissner-Nordstrom form of classical general relativity, with the role of the charge played by the tidal effects arising from projections of the fifth dimension. The existing observational solar system data on the perihelion shift of Mercury, on the light bending around the Sun (obtained using long-baseline radio interferometry), and ranging to Mars using the Viking lander, constrain the numerical values of the bulk tidal parameter and of the brane tension.Comment: 14 pages, to appear in Classical and Quantum Gravity. V2, minor corrections and references adde

    Multi-Atom Quasiparticle Scattering Interference for Superconductor Energy-Gap Symmetry Determination

    Get PDF
    Complete theoretical understanding of the most complex superconductors requires a detailed knowledge of the symmetry of the superconducting energy-gap Δkα\Delta_\mathbf{k}^\alpha, for all momenta k\mathbf{k} on the Fermi surface of every band α\alpha. While there are a variety of techniques for determining Δkα|\Delta_\mathbf{k}^\alpha|, no general method existed to measure the signed values of Δkα\Delta_\mathbf{k}^\alpha. Recently, however, a new technique based on phase-resolved visualization of superconducting quasiparticle interference (QPI) patterns centered on a single non-magnetic impurity atom, was introduced. In principle, energy-resolved and phase-resolved Fourier analysis of these images identifies wavevectors connecting all k-space regions where Δkα\Delta_\mathbf{k}^\alpha has the same or opposite sign. But use of a single isolated impurity atom, from whose precise location the spatial phase of the scattering interference pattern must be measured is technically difficult. Here we introduce a generalization of this approach for use with multiple impurity atoms, and demonstrate its validity by comparing the Δkα\Delta_\mathbf{k}^\alpha it generates to the Δkα\Delta_\mathbf{k}^\alpha determined from single-atom scattering in FeSe where s±s_{\pm} energy-gap symmetry is established. Finally, to exemplify utility, we use the multi-atom technique on LiFeAs and find scattering interference between the hole-like and electron-like pockets as predicted for Δkα\Delta_\mathbf{k}^\alpha of opposite sign

    Solidity of Viscous Liquids

    Full text link
    Recent NMR experiments on supercooled toluene and glycerol by Hinze and Bohmer show that small rotation angles dominate with only few large molecular rotations. These results are here interpreted by assuming that viscous liquids are solid-like on short length scales. A characteristic length, the "solidity length", separates solid-like behavior from liquid-like behavior.Comment: Plain RevTex file, no figure

    Symptoms of gastroesophageal reflux disease in severely mentally retarded people: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastroesophageal reflux disease (GERD) occurs when stomach acid frequently backs up (or refluxes) into the gullet (or esophagus), and it has serious consequences for the quality of life. Usually this is felt as heartburn. Because severely mentally retarded people usually do not utter complaints of heartburn, it requires a high index of suspicion to discover possible GERD. Therefore it is relevant for care professionals such as nurses to have knowledge of those with a higher risk of GERD and of the possible manifestations of GERD.</p> <p>Methods</p> <p>Using a predefined search method, electronic databases were searched for studies relating the presence of symptoms to the presence of GERD. Relevant data were extracted and the methodological quality of the studies assessed. The results of the included studies were synthesized and conclusions about the level of evidence were drawn.</p> <p>Results</p> <p>Nineteen studies were found relating symptoms to the presence of GERD. Only four were of good methodological quality. The studies were very diverse concerning the studied population, the study method, and the kind of symptoms examined. This makes it difficult to synthesize the results of the studies. There is evidence that patients with cerebral palsy, patients using anticonvulsive drugs, and those with an IQ lower than 35 more frequently have GERD. There is also evidence that vomiting, rumination and hematemesis are associated with a higher risk of the presence of GERD, whereas there is no clear scientific evidence that particular behavior symptoms are indicative for GERD.</p> <p>Conclusion</p> <p>The possible manifestations of GERD are many and varied. A guideline will be made for care professionals to aid systematic observation of possible manifestations of GERD.</p

    Sharp bounds on the critical stability radius for relativistic charged spheres

    Full text link
    In a recent paper by Giuliani and Rothman \cite{GR}, the problem of finding a lower bound on the radius RR of a charged sphere with mass M and charge Q<M is addressed. Such a bound is referred to as the critical stability radius. Equivalently, it can be formulated as the problem of finding an upper bound on M for given radius and charge. This problem has resulted in a number of papers in recent years but neither a transparent nor a general inequality similar to the case without charge, i.e., M\leq 4R/9, has been found. In this paper we derive the surprisingly transparent inequality MR3+R9+Q23R.\sqrt{M}\leq\frac{\sqrt{R}}{3}+\sqrt{\frac{R}{9}+\frac{Q^2}{3R}}. The inequality is shown to hold for any solution which satisfies p+2pTρ,p+2p_T\leq\rho, where p0p\geq 0 and pTp_T are the radial- and tangential pressures respectively and ρ0\rho\geq 0 is the energy density. In addition we show that the inequality is sharp, in particular we show that sharpness is attained by infinitely thin shell solutions.Comment: 20 pages, 1 figur

    Electronic and optical properties of LiBC

    Full text link
    LiBC, a semiconducting ternary borocarbide constituted of the lightest elements only, has been synthesized and characterized by x-ray powder diffraction, dielectric spectroscopy, and conductivity measurements. Utilizing an infrared microscope the phonon spectrum has been investigated in single crystals. The in-plane B-C stretching mode has been detected at 150 meV, noticeably higher than in AlB2, a non-superconducting isostructural analog of MgB2. It is this stretching mode, which reveals a strong electron-phonon coupling in MgB2, driving it into a superconducting state below 40 K, and is believed to mediate predicted high-temperature superconductivity in hole-doped LiBC [H. Rosner, A. Kitaigorodsky, and W. E. Pickett, Phys. Rev. Lett. 88, 127001 (2002)].Comment: 4 pages, 4 figure

    Nonequilibrium Magnetization Dynamics of Nickel

    Full text link
    Ultrafast magnetization dynamics of nickel has been studied for different degrees of electronic excitation, using pump-probe second-harmonic generation with 150 fs/800 nm laser pulses of various fluences. Information about the electronic and magnetic response to laser irradiation is obtained from sums and differences of the SHG intensity for opposite magnetization directions. The classical M(T)-curve can be reproduced for delay times larger than the electron thermalization time of about 280 fs, even when electrons and lattice have not reached thermal equilibrium. Further we show that the transient magnetization reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte
    corecore