5,199 research outputs found

    Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities

    Full text link
    We experimentally and theoretically investigate dephasing of zero dimensional microcavity polaritons in electrically tunable single dot photonic crystal nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ and to directly probe the influence on the emission spectrum of varying the incoherent excitation level and the lattice temperature. By comparing our results with theory we obtain the polariton dephasing rate and clarify its dependence on optical excitation power and lattice temperature. For low excitation levels we observe a linear temperature dependence, indicative of phonon mediated polariton dephasing. At higher excitation levels, excitation induced dephasing is observed due to coupling to the solid-state environment. The results provide new information on coherence properties of quantum dot microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal

    Excitation of stellar p-modes by turbulent convection: 1. Theoretical formulation

    Get PDF
    Stochatic excitation of stellar oscillations by turbulent convection is investigated and an expression for the power injected into the oscillations by the turbulent convection of the outer layers is derived which takes into account excitation through turbulent Reynolds stresses and turbulent entropy fluctuations. This formulation generalizes results from previous works and is built so as to enable investigations of various possible spatial and temporal spectra of stellar turbulent convection. For the Reynolds stress contribution and assuming the Kolmogorov spectrum we obtain a similar formulation than those derived by previous authors. The entropy contribution to excitation is found to originate from the advection of the Eulerian entropy fluctuations by the turbulent velocity field. Numerical computations in the solar case in a companion paper indicate that the entropy source term is dominant over Reynold stress contribution to mode excitation, except at high frequencies.Comment: 14 pages, accepted for publication in A&

    p3d: a general data-reduction tool for fiber-fed integral-field spectrographs

    Full text link
    The reduction of integral-field spectrograph (IFS) data is demanding work. Many repetitive operations are required in order to convert raw data into, typically a large number of, spectra. This effort can be markedly simplified through the use of a tool or pipeline, which is designed to complete many of the repetitive operations without human interaction. Here we present our semi-automatic data-reduction tool p3d that is designed to be used with fiber-fed IFSs. Important components of p3d include a novel algorithm for automatic finding and tracing of spectra on the detector, and two methods of optimal spectrum extraction in addition to standard aperture extraction. p3d also provides tools to combine several images, perform wavelength calibration and flat field data. p3d is at the moment configured for four IFSs. In order to evaluate its performance we have tested the different components of the tool. For these tests we used both simulated and observational data. We demonstrate that for three of the IFSs a correction for so-called cross-talk due to overlapping spectra on the detector is required. Without such a correction spectra will be inaccurate, in particular if there is a significant intensity gradient across the object. Our tests showed that p3d is able to produce accurate results. p3d is a highly general and freely available tool. It is easily extended to include improved algorithms, new visualization tools and support for additional instruments. The program code can be downloaded from the p3d-project web site http://p3d.sourceforge.netComment: 18 pages, 15 figures, 3 tables, accepted for publication in A&

    Hopf Categories

    Full text link
    We introduce Hopf categories enriched over braided monoidal categories. The notion is linked to several recently developed notions in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the fundamental theorem for Hopf modules and some of its applications to Hopf categories.Comment: 47 pages; final version to appear in Algebras and Representation Theor

    On Colorful Bin Packing Games

    Full text link
    We consider colorful bin packing games in which selfish players control a set of items which are to be packed into a minimum number of unit capacity bins. Each item has one of m2m\geq 2 colors and cannot be packed next to an item of the same color. All bins have the same unitary cost which is shared among the items it contains, so that players are interested in selecting a bin of minimum shared cost. We adopt two standard cost sharing functions: the egalitarian cost function which equally shares the cost of a bin among the items it contains, and the proportional cost function which shares the cost of a bin among the items it contains proportionally to their sizes. Although, under both cost functions, colorful bin packing games do not converge in general to a (pure) Nash equilibrium, we show that Nash equilibria are guaranteed to exist and we design an algorithm for computing a Nash equilibrium whose running time is polynomial under the egalitarian cost function and pseudo-polynomial for a constant number of colors under the proportional one. We also provide a complete characterization of the efficiency of Nash equilibria under both cost functions for general games, by showing that the prices of anarchy and stability are unbounded when m3m\geq 3 while they are equal to 3 for black and white games, where m=2m=2. We finally focus on games with uniform sizes (i.e., all items have the same size) for which the two cost functions coincide. We show again a tight characterization of the efficiency of Nash equilibria and design an algorithm which returns Nash equilibria with best achievable performance
    corecore