742 research outputs found

    A Database on Musicians’ Movements During Musical Performances

    Get PDF
    The movements of 20 musicians playing 11 different musical instruments, including all standard orchestral instruments, were captured during solo performances by means of a motion capturing system under concert-like conditions.DFG, FOR 1557, Simulation and Evaluation of Acoustical Environments (SEACEN

    Theoretical considerations on a 2D compliant tensegrity joint in context of a biomedical application

    Get PDF
    In this paper, a two-dimensional compliant tensegrity joint was investigated for potential biomedical applications such as orthotics or exoskeletons. The structure consists of two compressed members connected by five compliant tensioned members. The concept is based on the tensegrity principle, which allows the realization of dynamic orthoses without conventional hinge joints. Another advantage is the adaptability to the individual needs of the patient through a suitable design of the structure and the careful selection of the characteristics of the elements. Using geometric nonlinear analysis, the mechanical behavior of the structure was investigated, focusing on mechanical compliance. The main objective was to determine the influence of the initial length and stiffness of the tensioned members and the influence of the magnitude of external forces on the overall stiffness of the movable member of the structure. The results highlight the significant impact of member parameters on the structure's stiffness and movability under varying load magnitudes. The research laid the foundation for future development of dynamic orthoses based on this structure

    Time-dependent Turbulence in Stars

    Full text link
    Three-dimensional (3D) hydrodynamic simulations of shell oxygen burning (Meakin and Arnett 2007) exhibit bursty, recurrent fluctuations in turbulent kinetic energy. These are shown to be due to a global instability in the convective region, which has been suppressed in calculations of stellar evolution which use mixing-length theory (MLT). Quantitatively similar behavior occurs in the model of a convective roll (cell) of Lorenz (1963), which is known to have a strange attractor that gives rise to random fluctuations in time.An extension of the Lorenz model, which includes Kolmogorov damping and nuclear burning, is shown to exhibit bursty, recurrent fluctuations like those seen in the 3D simulations. A simple model of a convective layer (composed of multiple Lorenz cells) gives luminosity fluctuations which are suggestive of irregular variables (red giants and supergiants, Schwarzschild 1975). Apparent inconsistencies between Arnett, Meakin, and Young (2009) and Nordlund, Stein, and Asplund (2009) on the nature of convective driving have been resolved, and are discussed.Comment: 8 pages, 2 figures, IAU Symposium 271 "Astrophysical Dynamics: From Galaxies to Stars", Nice, FR, 201

    Platform Openness: A Systematic Literature Review and Avenues for Future Research

    Get PDF
    Open platforms such as Facebook or Android have stimulated innovation and competition across industries. Information systems literature has analyzed platforms from a variety of perspectives. The aim of this paper is to synthesize and integrate extant interdisciplinary research on the concept of platform openness. Towards this end, we conducted a literature review and analyzed the results with deductive and inductive coding approaches. We identified five distinct themes: measurement frameworks, implementation mechanisms, drivers for opening and closing platforms, trade-offs in designing openness, and the impact of changing openness on ecosystems. We propose three avenues for future research: finding the optimal degree of platform openness, integrating perspectives on accessibility and transparency, and analyzing the influence of openness and other factors with configurational theories. This paper contributes to research on platforms by laying out the main themes and perspectives in the research stream of platform openness and by identifying areas for future research

    Theoretical considerations on 3D tensegrity joints for the use in manipulation systems

    Get PDF
    This paper presents a comprehensive analysis of a three-dimensional compliant tensegrity joint structure, examining its actuation, kinematics, and response to external loads. The study investigates a baseline configuration and two asymmetric variants of the joint. The relationship between the shape parameter and the parameters of the tensioned segments is derived, enabling the mathematical description of cable lengths for joint actuation. Geometric nonlinear static finite element simulations are performed to analyze the joint's response under various load conditions. The results reveal the joint's range of motion, the effect of different stiffness configurations, and its deformation behavior under external forces. The study highlights the asymmetric nature of the joint and its potential for targeted motion restriction. These findings advance the general understanding of the behavior of the considered tensegrity joint and provide valuable insights for their design and application in soft robotic systems

    Towards a Conceptualization of Capabilities for Innovating Business Models in the Industrial Internet of Things

    Get PDF
    The emergence of Internet of Things (IoT) technologies offers promising value potentials for industrial manufacturers based on the combination of smart products and data-driven services. At the same time, many incumbent firms experience a threat to their traditional value proposition and are challenged to innovate and reconfigure their existing business models. However, many of these traditional manufacturers lack or are unaware of the required capabilities for successfully reinventing their business model using IoT technologies. We therefore adopt the lens of dynamic and operational capabilities and conduct an empirical analysis of organizational capabilities required for successful IoT-enabled business model innovation (BMI). Through an exploratory, qualitative study based on interviews with decision makers in industrial manufacturing companies and experts in practice-oriented research institutions, we identify eleven distinct dynamic and operational capabilities. Our findings provide useful insights for research and practice and advance the understanding of enablers in IoT-enabled BMI

    A user-friendly guide to using distance measures to compare time series in ecology

    Get PDF
    Time series are a critical component of ecological analysis, used to track changes in biotic and abiotic variables. Information can be extracted from the properties of time series for tasks such as classification (e.g., assigning species to individual bird calls); clustering (e.g., clustering similar responses in population dynamics to abrupt changes in the environment or management interventions); prediction (e.g., accuracy of model predictions to original time series data); and anomaly detection (e.g., detecting possible catastrophic events from population time series). These common tasks in ecological research all rely on the notion of (dis-) similarity, which can be determined using distance measures. A plethora of distance measures have been described, predominantly in the computer and information sciences, but many have not been introduced to ecologists. Furthermore, little is known about how to select appropriate distance measures for time-series-related tasks. Therefore, many potential applications remain unexplored. Here, we describe 16 properties of distance measures that are likely to be of importance to a variety of ecological questions involving time series. We then test 42 distance measures for each property and use the results to develop an objective method to select appropriate distance measures for any task and ecological dataset. We demonstrate our selection method by applying it to a set of real-world data on breeding bird populations in the UK and discuss other potential applications for distance measures, along with associated technical issues common in ecology. Our real-world population trends exhibit a common challenge for time series comparisons: a high level of stochasticity. We demonstrate two different ways of overcoming this challenge, first by selecting distance measures with properties that make them well suited to comparing noisy time series and second by applying a smoothing algorithm before selecting appropriate distance measures. In both cases, the distance measures chosen through our selection method are not only fit-for-purpose but are consistent in their rankings of the population trends. The results of our study should lead to an improved understanding of, and greater scope for, the use of distance measures for comparing ecological time series and help us answer new ecological questions

    Quantifying reliability and data deficiency in global vertebrate population trends using the Living Planet Index

    Get PDF
    Global biodiversity is facing a crisis, which must be solved through effective policies and on-the-ground conservation. But governments, NGOs, and scientists need reliable indicators to guide research, conservation actions, and policy decisions. Developing reliable indicators is challenging because the data underlying those tools is incomplete and biased. For example, the Living Planet Index tracks the changing status of global vertebrate biodiversity, but taxonomic, geographic and temporal gaps and biases are present in the aggregated data used to calculate trends. However, without a basis for real-world comparison, there is no way to directly assess an indicator's accuracy or reliability. Instead, a modelling approach can be used. We developed a model of trend reliability, using simulated datasets as stand-ins for the "real world", degraded samples as stand-ins for indicator datasets (e.g., the Living Planet Database), and a distance measure to quantify reliability by comparing partially sampled to fully sampled trends. The model revealed that the proportion of species represented in the database is not always indicative of trend reliability. Important factors are the number and length of time series, as well as their mean growth rates and variance in their growth rates, both within and between time series. We found that many trends in the Living Planet Index need more data to be considered reliable, particularly trends across the global south. In general, bird trends are the most reliable, while reptile and amphibian trends are most in need of additional data. We simulated three different solutions for reducing data deficiency, and found that collating existing data (where available) is the most efficient way to improve trend reliability, whereas revisiting previously studied populations is a quick and efficient way to improve trend reliability until new long-term studies can be completed and made available
    corecore