32 research outputs found

    Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    Full text link
    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe3C. For most samples the temperature dependence of the remanence decreases linearly with T - a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.Comment: submitted to Carbo

    Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment

    Full text link
    We have studied the changes in the ferromagnetic behavior of graphite powder and graphite flakes after treatment with diluted sulphuric acid. We show that this kind of acid treatment enhances substantially the ferromagnetic magnetization of virgin graphite micrometer size powder as well as in graphite flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in a micrometer size thin graphite flake after acid treatment reaches values comparable to polycrystalline cobalt.Comment: 3.2 pages, 4 figure

    Thermopower and magnetotransport properties of Bi100−xSbx topological insulator thin films prepared by flash evaporation

    Get PDF
    We have measured the temperature dependence of resistance R(T), thermopower S(T), magnetoresistance (MR) and the Hall effect (HE) of Bi80Sb20, Bi85Sb15 and Bi90Sb10 topological insulator thin films. Samples were prepared by sequential flash-evaporation at room temperature and annealing at T = 350 K. The R(T) of the three investigated samples show metallic-like behavior at temperatures less than T = 75 K, while at higher temperatures, R(T) curves show a semiconducting-like behavior. The thermopower S(T) of the three investigated samples is negative in the entire temperature range measured in this work, with a linear behavior from 5 K up to ≈100 K. The magnetoresistance of all samples is positive with a small temperature dependence. The highest MR(B = 7 T) was observed in Bi85Sb15 with a ≈600% and ≈125% change at 5 K and 300 K, respectively. Clear evidence of weak antilocalization contribution to the MR was observed only in sample Bi85Sb15 at temperatures T < 75 K. Quantum oscillations in the MR originating from the Fermi surface, which has a clear two-dimensional character, were observed in sample Bi85Sb15 up to ≈21 K. Carrier mobility information of sample Bi85Sb15 was extracted from low field HE data, showing a remarkably high value of ÎŒ ≈ 2.8 × 104 cm2/Vs at 5 K, with a small decrease for increasing temperature.Fil: Osmic, E.. Universitat Leipzig. Felix Bloch Institut Fur Festkorperphysik.; AlemaniaFil: Barzola Quiquia, Jose Luis. Universitat Leipzig. Felix Bloch Institut Fur Festkorperphysik.; AlemaniaFil: Böhlmann, W.. Universitat Leipzig. Felix Bloch Institut Fur Festkorperphysik.; AlemaniaFil: Bercoff, Paula Gabriela. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: Venosta, Lisandro Francisco. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola. Universidad Nacional de CĂłrdoba. Instituto de FĂ­sica Enrique Gaviola; ArgentinaFil: HĂ€ussler, P.. Chemnitz University Of Technology; Alemani

    The influence of Ga+^+-irradiation on the transport properties of mesoscopic conducting thin films

    Full text link
    We studied the influence of 30keV Ga+^+-ions -- commonly used in focused ion beam (FIB) devices -- on the transport properties of thin crystalline graphite flake, La0.7_{0.7}Ca0.3_{0.3}MnO3_3 and Co thin films. The changes of the electrical resistance were measured in-situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga+^+ fluences much below those used for patterning and ion beam induced deposition (IBID), limiting seriously the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.Comment: 14 pages, 11 figures, will be published in Nanotechnology 201

    Evidence of Josephson-coupled superconducting regions at the interfaces of Highly Oriented Pyrolytic Graphite

    Full text link
    Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current-Voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces, reaching zero resistance at low enough temperatures. The overall behavior indicates the existence of superconducting regions with critical temperatures above 100 K at the internal interfaces of oriented pyrolytic graphite.Comment: 6 Figures, 5 page
    corecore