65 research outputs found

    Nonlocal conductance reveals helical superconductors

    Full text link
    Helical superconductors form a two dimensional, time-reversal invariant topological phase characterized by a Kramers pair of Majorana edge modes (helical Majorana modes). Existing detection schemes to identify this phase rely either on spin transport properties, which are quite difficult to measure, or on local charge transport, which allows only a partial identification. Here we show that the presence of helical Majorana modes can be unambiguously revealed by measuring the nonlocal charge conductance. Focusing on a superconducting ring, we suggest two experiments that provide unique and robust signatures to detect the helical superconductor phase.Comment: 4 pages, 2 figure

    Majorana-Klein hybridization in topological superconductor junctions

    Full text link
    We present a powerful and general approach to describe the coupling of Majorana fermions to external leads, of interacting or non-interacting electrons. Our picture has the Klein factors of bosonization appearing as extra Majoranas hybridizing with the physical ones. We demonstrate the power of this approach by solving a highly nontrivial SO(M) Kondo problem arising in topological superconductors with M Majorana-lead couplings, allowing for arbitrary M and for conduction electron interactions. We find that these topological Kondo problems give rise to robust non-Fermi liquid behavior, even for Fermi liquid leads, and to a quantum phase transition between insulating and Kondo regimes when the leads form Luttinger liquids. In particular, for M=4 we find a long sought-after stable realization of the two-channel Kondo fixed point

    Z_2 Topological Insulators in Ultracold Atomic Gases

    Full text link
    We describe how optical dressing can be used to generate bandstructures for ultracold atoms with non-trivial Z_2 topological order. Time reversal symmetry is preserved by simple conditions on the optical fields. We first show how to construct optical lattices that give rise to Z_2 topological insulators in two dimensions. We then describe a general method for the construction of three-dimensional Z_2 topological insulators. A central feature of our approach is a new way to understand Z_2 topological insulators starting from the nearly-free electron limit

    Symmetry classes, many-body zero modes, and supersymmetry in the complex Sachdev-Ye-Kitaev model

    Get PDF
    The complex Sachdev-Ye-Kitaev (cSYK) model is a charge-conserving model of randomly interacting fermions. The interaction term can be chosen such that the model exhibits chiral symmetry. Then, depending on the charge sector and the number of interacting fermions, level spacing statistics suggests a fourfold categorization of the model into the three Wigner-Dyson symmetry classes. In this work, inspired by previous findings for the Majorana Sachdev-Ye-Kitaev model, we embed the symmetry classes of the cSYK model in the Altland-Zirnbauer framework and identify consequences of chiral symmetry originating from correlations across different charge sectors. In particular, we show that for an odd number of fermions, the model hosts exact many-body zero modes that can be combined into a generalized fermion that does not affect the system's energy. This fermion directly leads to quantum-mechanical supersymmetry that, unlike explicitly supersymmetric cSYK constructions, does not require fine-tuned couplings, but only chiral symmetry. Signatures of the generalized fermion, and thus supersymmetry, include the long-time plateau in time-dependent correlation functions of fermion-parity-odd observables: The plateau may take nonzero value only for certain combinations of the fermion structure of the observable and the system's symmetry class. We illustrate our findings through exact diagonalization simulations of the system's dynamics.ERC Starting Grant No. 678795 TopInS

    The effect of symmetry class transitions on the shot noise in chaotic quantum dots

    Get PDF
    Using the random matrix theory (RMT) approach, we calculated the weak localization correction to the shot noise power in a chaotic cavity as a function of magnetic field and spin-orbit coupling. We found a remarkably simple relation between the weak localization correction to the conductance and to the shot noise power, that depends only on the channel number asymmetry of the cavity. In the special case of an orthogonal-unitary crossover, our result coincides with the prediction of Braun et. al [J. Phys. A: Math. Gen. {\bf 39}, L159-L165 (2006)], illustrating the equivalence of the semiclassical method to RMT.Comment: 4 pages, 1 figur

    Topological Kondo effect with Majorana fermions

    Full text link
    The Kondo effect is a striking consequence of the coupling of itinerant electrons to a quantum spin with degenerate energy levels. While degeneracies are commonly thought to arise from symmetries or fine-tuning of parameters, the recent emergence of Majorana fermions has brought to the fore an entirely different possibility: a "topological degeneracy" which arises from the nonlocal character of Majorana fermions. Here we show that nonlocal quantum spins formed from these degrees of freedom give rise to a novel "topological Kondo effect". This leads to a robust non-Fermi liquid behavior, known to be difficult to achieve in the conventional Kondo context. Focusing on mesoscopic superconductor devices, we predict several unique transport signatures of this Kondo effect, which would demonstrate the non-local quantum dynamics of Majorana fermions, and validate their potential for topological quantum computation

    Topologically stable gapless phases of time-reversal invariant superconductors

    Full text link
    We show that time-reversal invariant superconductors in d=2 (d=3) dimensions can support topologically stable Fermi points (lines), characterized by an integer topological charge. Combining this with the momentum space symmetries present, we prove analogs of the fermion doubling theorem: for d=2 lattice models admitting a spin X electron-hole structure, the number of Fermi points is a multiple of four, while for d=3, Fermi lines come in pairs. We show two implications of our findings for topological superconductors in d=3: first, we relate the bulk topological invariant to a topological number for the surface Fermi points in the form of an index theorem. Second, we show that the existence of topologically stable Fermi lines results in extended gapless regions in a generic topological superconductor phase diagram.Comment: 7 pages, 1 figure; v3: expanded versio

    Generalization of the Poisson kernel to the superconducting random-matrix ensembles

    Full text link
    We calculate the distribution of the scattering matrix at the Fermi level for chaotic normal-superconducting systems for the case of arbitrary coupling of the scattering region to the scattering channels. The derivation is based on the assumption of uniformly distributed scattering matrices at ideal coupling, which holds in the absence of a gap in the quasiparticle excitation spectrum. The resulting distribution generalizes the Poisson kernel to the nonstandard symmetry classes introduced by Altland and Zirnbauer. We show that unlike the Poisson kernel, our result cannot be obtained by combining the maximum entropy principle with the analyticity-ergodicity constraint. As a simple application, we calculate the distribution of the conductance for a single-channel chaotic Andreev quantum dot in a magnetic field.Comment: 7 pages, 2 figure
    • …
    corecore