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The effect of symmetry class transitions on the shot noise in chaotic quantum dots.
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Using the random matrix theory (RMT) approach, we calculated the weak localization correction
to the shot noise power in a chaotic cavity as a function of magnetic field and spin-orbit coupling.
We found a remarkably simple relation between the weak localization correction to the conductance
and to the shot noise power, that depends only on the channel number asymmetry of the cavity.
In the special case of an orthogonal-unitary crossover, our result coincides with the prediction of
Braun et. al [J. Phys. A: Math. Gen. 39, L159-L165 (2006)], illustrating the equivalence of the
semiclassical method to RMT.
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The time dependent fluctuations in the electrical cur-
rent due to the discreteness of the electrical charge are
known as shot noise1,2. In the quantum regime it is influ-
enced by the magnetic field and the spin-orbit coupling
through weak (anti)localization3,4,5,6,7,8,9, a correction of
order e2/h to the classical value of the noise power.
The motivation for studying the weak localization cor-

rection to the shot noise is the recent theoretical10,11,12,13

and experimental14,15,16 interest in the transport proper-
ties of GaAs based quantum dots. Aleiner and Falko
showed that in such systems the interplay between spin-
orbit scattering and in-plane magnetic field results in a
remarkably rich set of symmetry classes characterized by
the relative strength of the system parameters11. Con-
sequently, the question of symmetry class transitions is
far more complicated than in the case of the usual weak
localization - weak antilocalization physics. This latter,
simpler crossover is also achievable, if the spin-orbit cou-
pling strength is spatially modulated12.
For quantum dots with chaotic dynamics random ma-

trix theory gives a convenient way to describe the trans-
port properties, provided that the electron transit time
τerg is much shorter than the other time scales of the
problem7. Constructing the appropriate RMT mod-
els describing the various crossovers above, the aver-
age and the variance of conductance was calculated in
Refs. 11,12,13. The theoretical results are confirmed by
numerical simulations17 and they are in good agreement
with the experiments15,16.
The RMT related aspects of shot noise are also under

active research8,18,19,20,21,22,23,24,25,26. Braun et. al. give
a semiclassical prediction for the simplest type of sym-
metry class transition, the orthogonal-unitary crossover8.
Physically this is the effect of a weak perpendicular mag-
netic field in the case of spinless electrons. Assuming a
two terminal device with N1 and N2 modes in the leads,
the prediction for the average of the shot noise power P
reads as

〈P 〉

P0
=

2N2
1N

2
2

N3
+

2N1N2(N1 −N2)
2

N4(1 + ξ)
+O(

1

N
), (1)

with P0 = 2e3|V |/h, N = N1 +N2 being the total num-
ber of modes. The factors of two are due to the spin

degeneracy. The dependence on the magnetic field B⊥

enters through the parameter

ξ = c
e2L4B2

⊥

~τergN∆
,

where L is the characteristic length of the dot, ∆ is
its mean level spacing and c is a numerical factor of
order unity. Comparing this result to the case of the
conductance28,29,30,31,

〈G〉

G0
=

2N1N2

N
−

2N1N2

N2(1 + ξ)
+O(

1

N
), (2)

where G0 = e2/h, we find the simple relation

δP

P0
/
δG

G0
= −

(

N1 −N2

N1 +N2

)2

(3)

between the weak localization correction to the conduc-
tance and the shot noise, denoted by δG and δP , respec-
tively (the second terms in (1) and (2)).
The behavior of the shot noise under more general

crossovers is yet unknown. In this paper we address this
question and present an RMT calculation for the average
shot noise power allowing for any symmetry class tran-
sitions induced by in-plane and perpendicular magnetic
fields and spin-orbit coupling studied in Ref. 11,12,13.
For technical reasons we restrict our attention to the
case of N1, N2 ≫ 1 and obtain 〈P 〉 up to the O(1) cor-
rection in the small parameter 1/N . Our result shows
that the relation (3) is valid for all of these crossovers.
As a particular consequence, in the special case of the
orthogonal-unitary transition we find a perfect agreement
with Braun et. al.8 demonstrating the equivalence of
their semiclassical approach to RMT.
In the Landauer-Büttiker formalism the shot noise

power can be expressed as32,33,34

P = P0Tr
[

tt†
(

1− tt†
)]

,

where the trace is taken over channel and spin indices.
The matrix t describes the transmission from lead 1 to
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lead 2. It is the submatrix of S, the N × N scattering
matrix of the system7,

t = W2SW
†
1 ,

where W1 is an N1 ×N matrix defined by (W1)ij = δi,j ,
W2 is an N2 × N matrix with (W2)ij = δi+N1,j . For an
RMT model of the crossover regime we apply the stub-
model approach12,13,35, and parameterize the S-matrix
as

S = PU(1−RU)−1P †, (4)

with

R = Q†rQ.

In the above expression U is an M ×M random unitary
symmetric matrix taken from Dyson’s circular orthogonal
ensemble7 (COE) and r is a unitary matrix of sizeM−N .
The N ×M matrix P and the (M −N) ×M matrix Q
are projection matrices with Pij = δi,j and Qij = δi+N,j.
The matrix r is given by

r = exp

[

−
2πi

M∆
H ′

]

, (5)

where H ′ is an (M −N) dimensional quaternion random
matrix generating the perturbations to the dot Hamilto-
nian due to magnetic fields and spin-orbit coupling12,13.
We do not make any explicit reference to the particu-
lar form of the symmetry breaking perturbation, thus
depending on the system under consideration, the model
can describe the standard weak localization - weak antilo-
calization crossovers or the more complicated transitions
between the symmetry classes identified by Aleiner and
Falko11.
To obtain the weak localization correction to shot noise

power, one has to calculate the average

Tr
〈

tt†
(

1− tt†
)〉

= T2 − T4, (6)

where

T2 = Tr
〈

tt†
〉

, T4 = Tr
〈

tt†tt†
〉

.

The calculation can be done by expanding S in powers
of U using (4) and averaging over the COE with the help
of the diagrammatic technique of Ref. 36.
In the case of T2, the result is already known from

earlier studies of the conductance, 〈G〉 = G0T2
12,13.

T2 =
2N1N2

N
−

N1N2

N
(T CT )ρσ,ρσ , (7)

where T = 112 ⊗ σ2 and we assumed summation for
repeated indices. The matrix C is defined as

C =
〈

(M112 ⊗ 112 − trR⊗R∗)−1
〉

, (8)

where 112 is the 2 × 2 unit matrix, ∗ denotes quaternion
complex conjugation and the remaining average should
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FIG. 1: Diagrams representing the term T4. See text for
description.

be done with respect to the distribution ofH ′. The tensor
product is defined with a backwards multiplication:

(σi ⊗ σj)(σi′ ⊗ σj′ ) = (σiσi′)⊗ (σj′σj). (9)

The trace in the second term is understood as

(trR⊗R∗)αβ,γδ = Rij,αβR
∗
ji,γδ,

where latin letters are channel indices, Greek letters refer
to spin space. In (7), the contribution proportional to
C enters through the summation of maximally crossed
diagrams. Note that all the magnetic field and spin-orbit
coupling dependence of the conductance is encoded in
this object12,13. The same structure will play a key role
in the case of the term T4 too, determining its crossover
behavior.
The fourfold product T4 can be represented as the sum

of four types of diagrams, which are schematically de-
picted on Fig. 1. The thick lines with and without +
correspond to the series expansion of

U(1−RU)−1 and U †(1−R†U †)−1,

respectively. The line with empty circle represents the
matrix C1, the one with shaded circle corresponds to C2,

where Ci = P †W †
i WiP . The thin lines that are either

around the matrices Ci or connecting them are contrac-
tions corresponding to the diagrammatic method. The
way these thin lines are drawn define the four distinct
types of diagrams shown on Fig. 1.
In the case of the type a (Fig. 1a), the leading order di-

agrams have ladder structures on the left and right of the
middle part containing the matrix C2. These contribute
in orders O(N) and O(1),

T
(a,l)
4 =

2N2
1N2

(N + 1)2
=

2N2
1N2

N2
−

4N2
1N2

N3
+O

(

1

N

)

.

An other O(1) correction comes from inserting a maxi-
mally crossed part into one of the ladders, resulting in

δT
(a,mc)
4 =

2N2
1N2

N3

(

2−N (T CT )ρσ,ρσ

)

.
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The contribution from type b (Fig. 1b) can be obtained
from type a by interchanging N1 and N2. In the case
of type c (Fig. 1c), the leading order diagrams have lad-
der structures attached to the central part, which can
be an U-cycle of length two or a T-cycle representing
tr
(

RR†RR†
)

with tr denoting channel trace37. The cor-
responding contribution is

T
(c,l)
4 = −

2NN2
1N

2
2

(N + 1)4
= −

2N2
1N

2
2

N3
+

8N2
1N

2
2

N4
+O

(

1

N

)

.

The higher order diagrams giving further O(1) terms can
be drawn again by inserting a maximally crossed part
into one of the ladders or by opening the central part and
putting the insertion between two neighboring ladders.
Evaluating the diagrams we find

T
(c,mc)
4 = −

4N2
1N2

N4

(

2−N (T CT )ρσ,ρσ

)

.

Finally, as the contributions of type d (Fig. 1d) are at
most of order O(1/N2), they can be disregarded in a
weak localization calculation.
Collecting the contributions to T4 and using (6) and

(7), for the average shot noise power we find

〈P 〉

P0
=

2N2
1N

2
2

N3
+

N1N2(N1 −N2)
2

N3
(T CT )ρσ,ρσ , (10)

which is the main result of our paper. Similarly to
the case of the conductance, all the dependence on the
magnetic fields and spin-orbit coupling is through the

combination (T CT )ρσ,ρσ. The concrete expressions for

(T CT )ρσ,ρσ corresponding to the various symmetry class
transitions can be found in Refs. 12,13. In the particular
case of an orthogonal-unitary crossover the semiclassical
prediction (1) is recovered.
Together with (7), the formula (10) indeed implies that

the relation (3) holds for all the crossovers due to mag-
netic fields and spin-orbit coupling studied in the context
of transport in chaotic quantum dots. This means that
the first quantum correction to the ensemble averaged
shot noise is related to the first quantum correction to
the ensemble averaged mean current 〈I〉 = 〈G〉V by a
simple multiplication with a factor that (apart from a
sign) depends only on the channel number asymmetry of
the system. It would be interesting to know if there is a
similar relation for higher dimensional disordered meso-
scopic conductors.
In summary, we gave an RMT prediction for the av-

erage shot noise power as a function of magnetic field
and spin-orbit coupling. Our result can be applied to
the various crossovers ranging from the standard weak
localization - weak antilocalization transition to the in-
terpolation between the symmetry classes identified by
Aleiner and Falko11. We found that the remarkably sim-
ple relation (3) between δP and δG persists for all of
these crossovers. In the special case of an orthogonal-
unitary transition we recover the semiclassical prediction
of Braun et al.8.
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2 Ya. M. Blanter and M. Büttiker, Physics Reports 336, 1
(2000).

3 M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B
46 13400 (1992).
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