45 research outputs found

    A COMPABILITY BASED ALLOCATION METHOD IN HIGH LEVEL SYNTHESIS

    Get PDF
    This paper presents a model and a method for the allocation during the high level datapath synthesis of pipelined ASIC architectures starting with a behavioral description of the system consisting of theoretical operational units with arbitrary operation duration. As a part of the Scheduling and Allocation Method (SAM), a compatibility relation is used for determining the operations to be allocated in one processor element. The aim of the procedure is to reduce the number of processors that are necessary for the realization of the theoretical operational units. The method presented in this paper can provide a better solution to the resource allocation problem in many cases by handling the conditional branches. The constraints for the types of processors to be applied can be different depending upon the hardware resources

    Mössbauer characterization of microbially mediated iron and manganese ores of variable geological ages

    Get PDF
    A combination of various techniques was applied to investigate the mineralogy of the Neoproterozoic Urucum iron and manganese deposit (Brazil) and Carboniferous and Permian manganese carbonate deposits (China). The examined deposits exhibited signs of microbial mediation from Fe and Mn bacteria and cyanobacteria. The studied samples showed diversity in their composition and particle size. Probes from Urucum deposit revealed that the rocks consist mainly of hematite, showing Mn substitution which reflects the oxidation of Mn on the active surface of Fe-rich biomat. Nanominerals occurring in significant concentration also supported the microbial contribution to the formation of these ores. Representative samples of Neoproterozoic and Permian deposits showed considerable amount of mixed carbonates with variable composition. 57Fe Mössbauer spectroscopy analysis supported by X-ray diffraction and transmission electron microscopy data provided a detailed characterization of Fe-rich mineral phases of the samples, including metal ratio outlooks, particle size dimension and presence and type of impurities. Integrity and high resolution of the methods allowed to determine new features of the samples reflecting important signatures of microbial activity revealing the biogeochemistry of the biomat formation

    A case report of isolated distal upper extremity weakness due to cerebral metastasis involving the hand knob area

    Get PDF
    Unilateral weakness of an upper extremity is most frequently caused by traumatic nerve injury or compression neuropathy. In rare cases, lesion of the central nervous system may result in syndromes suggesting peripheral nerve damage by the initial examination. Pseudoperipheral hand palsy is the best known of these, most frequently caused by a small lesion in the contralateral motor cortex of the brain. The 'hand knob' area refers to a circumscribed region in the precentral gyrus of the posterior frontal lobe, the lesion of which leads to isolated weakness of the upper extremity mimicking peripheral nerve damage. The etiology of this rare syndrome is almost exclusively related to an embolic infarction.We present the case of a 70-year-old male patient with isolated left sided upper extremity weakness and clumsiness without sensory disturbance suggesting a lesion of the radial nerve. Nerve conduction studies had normal results excluding peripheral nerve damage. Neuroimaging (cranial CT and MRI) detected 3 space occupying lesions, one of them in the right precentral gyrus. An irregularly shaped tumor was found by CT in the left lung with multiple associated lymph node conglomerates. The metastasis from this mucinous tubular adenocarcinoma with solid anaplastic parts to the 'hand knob' area was responsible for the first clinical sign related to the pulmonary malignancy.Pseudoperipheral palsy of the upper extremity is not necessarily the consequence of an embolic stroke. If nerve conduction studies have normal results, neuroimaging - preferably MRI - should be performed, as lesion in the hand-knob area of the precentral gyrus can also be caused by a malignancy

    How length of light exposure shapes the development of riverine algal biomass in temperate rivers?

    Get PDF
    The impact of cumulative daily solar radiation (CDSR) on the biomass of river phytoplankton (Chl-a) in the growing season was studied using a large dataset of rivers in the Carpathian Basin. The amount of solar radiation was cumulated over the range of 1–60 days. The CDSR–Chl-a relationship could be described by linear regression and appeared to be significant for almost all watercourses with the exception of rivers with short water residence time. To determine the most relevant time period of CDSR impacting phytoplankton biomass, the slopes of regressions were plotted against the accumulating number of days of light exposure (1–60). Two characteristic shapes were obtained: unimodal for rhithral rivers with hard substrate and steady increase for lowland potamal rivers with fine substrate. In both cases, there is an increasing tendency in the slope values with water residence time (WRT). It was demonstrated that CDSR has a pronounced impact on river phytoplankton biomass even in cases when WRT was shorter than the cumulated solar radiation period. These results indicate that development of phytoplankton within the river channel is a complex process in which meroplankton dynamics may have significant impacts. Our results have two implications: First, CDSR cannot be neglected in predictive modelling of riverine phytoplankton biomass. Second, climate models forecast increased drought with subsequently increased CDSR in several regions globally, which may trigger a rise in phytoplankton biomass in light-limited rivers with high nutrient concentrations

    Dehydration-rehydration behaviour of layered double hydroxides: a study by X-ray diffractometry and MAS NMR spectroscopy

    No full text
    Mg-Al and Zn-Al double hydroxides were synthesized and their dehydration-rehydration behaviour was studied by X-ray diffractometry and Al-27 magic-angle spinning (MAS) NMR spectroscopy. On dehydration the layered structure collapsed, but treatment in water resulted in partial reconstitution of the original structure, Or. heat treatment part of the octahedrally coordinated aluminium, typical of layered double hydroxides, became tetrahedrally coordinated, On rehydration some of the tetrahedral aluminium became octahedrally coordinated again
    corecore