9 research outputs found

    Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps

    No full text
    Cytokines are well known to play a central role in chronic rhinosinusitis with nasal polyps (CRSwNP), particularly in maintenance of the inflammatory response and the recruitment of eosinophils. The pathophysiological concepts concerning the involvement of inflammatory cytokines in CRSwNP have gradually evolved. Although the Th2 cytokines environment associated with an eosinophilic infiltration has retained a central role in the genesis of polyps, the role of other cytokine subpopulations has also and more recently been detailed, leading to a specific and complex signature in CRSwNP. The purpose of this review is to summarize the current state of knowledge about the cytokine signature in CRSwNP, the role of cytokines in the pathogenesis of this disease and in the intercellular dialog between epithelial cells, fibroblasts and inflammatory cells. Knowledge of this precise cytokine signature in CRSwNP is fundamental in the perspective of potential targeting biotherapies

    Oncostatin M Counteracts the Fibrotic Effects of TGF-β1 and IL-4 on Nasal-Polyp-Derived Fibroblasts: A Control of Fibrosis in Chronic Rhinosinusitis with Nasal Polyps?

    No full text
    Chronic rhinosinusitis with nasal polyps (CRSwNP) is associated with inflammation and tissue remodeling including myofibroblasts differentiation and extracellular matrix (ECM) deposition mediated by TGF-β1 and IL-4. Oncostatin M (OSM) is a cytokine involved in fibrotic processes in other cellular subtypes. We investigated the mechanisms of action of OSM in the fibrosis process associated with CRSwNP. The expression of IL-4, OSM and TGF-β1 was assessed by RT-qPCR. Primary human cultures of nasal-polyp-derived fibroblasts were established and stimulated by TGF-β1 and/or IL-4 and/or OSM. The expression of ECM components and αSMA was determined by RT-qPCR and Western blot. TGF-β1-Smad3 signaling was investigated by immunofluorescence. TGF-β1, IL-4 and OSM as well as αSMA were overexpressed in nasal polyps when compared to noninflammatory nasal mucosa. In TGF-β1-stimulated nasal-polyp-derived fibroblasts, ECM genes and αSMA gene and protein were overexpressed, as well as αSMA in IL-4-stimulated fibroblasts. OSM counteracted the profibrotic effect of TGF-β1 on ECM components and αSMA. TGF-β1-induced nuclear translocation of Smad3 was completely reversed by OSM. OSM counteracts the profibrotic effect of IL-4 and also TGF-β1, by inhibiting the nuclear translocation of Smad3. We suggest OSM could be an efficient tool to protect against fibrosis in CRSwNP

    Apalutamide Prevents SARS-CoV-2 Infection in Lung Epithelial Cells and in Human Nasal Epithelial Cells

    No full text
    In early 2020, the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and rapidly propagated worldwide causing a global health emergency. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) protein for cell entry, followed by proteolytic cleavage of the Spike (S) protein by the transmembrane serine protease 2 (TMPRSS2), allowing fusion of the viral and cellular membranes. Interestingly, TMPRSS2 is a key regulator in prostate cancer (PCa) progression which is regulated by androgen receptor (AR) signaling. Our hypothesis is that the AR signaling may regulate the expression of TMPRSS2 in human respiratory cells and thus influence the membrane fusion entry pathway of SARS-CoV-2. We show here that TMPRSS2 and AR are expressed in Calu-3 lung cells. In this cell line, TMPRSS2 expression is regulated by androgens. Finally, pre-treatment with anti-androgen drugs such as apalutamide significantly reduced SARS-CoV-2 entry and infection in Calu-3 lung cells but also in primary human nasal epithelial cells. Altogether, these data provide strong evidence to support the use of apalutamide as a treatment option for the PCa population vulnerable to severe COVID-19

    Apalutamide Prevents SARS-CoV-2 Infection in Lung Epithelial Cells and in Human Nasal Epithelial Cells

    No full text
    In early 2020, the novel pathogenic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, and rapidly propagated worldwide causing a global health emergency. SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) protein for cell entry, followed by proteolytic cleavage of the Spike (S) protein by the transmembrane serine protease 2 (TMPRSS2), allowing fusion of the viral and cellular membranes. Interestingly, TMPRSS2 is a key regulator in prostate cancer (PCa) progression which is regulated by androgen receptor (AR) signaling. Our hypothesis is that the AR signaling may regulate the expression of TMPRSS2 in human respiratory cells and thus influence the membrane fusion entry pathway of SARS-CoV-2. We show here that TMPRSS2 and AR are expressed in Calu-3 lung cells. In this cell line, TMPRSS2 expression is regulated by androgens. Finally, pre-treatment with anti-androgen drugs such as apalutamide significantly reduced SARS-CoV-2 entry and infection in Calu-3 lung cells but also in primary human nasal epithelial cells. Altogether, these data provide strong evidence to support the use of apalutamide as a treatment option for the PCa population vulnerable to severe COVID-19

    Les mutations de DNAH17 causent une infertilitĂ© isolĂ©e par asthĂ©nospermie par dĂ©faut d’une dynĂ©ine axonĂ©male spĂ©cifique du flagelle des spermatozoĂŻdes

    No full text
    National audienceMotile cilia and sperm flagella share an evolutionarily conserved axonemal structure. Their structural and/or functional defects are associated with primary ciliary dyskinesia (PCD), a genetic disease characterized by chronic respiratory-tract infections and in which most males are infertile due to asthenozoospermia. Among the well-characterized axonemal protein complexes, the outer dynein arms (ODAs), through ATPase activity of their heavy chains (HCs), play a major role for cilia and flagella beating. However, the contribution of the different HCs (gtype: DNAH5 and DNAH8 and btype: DNAH9, DNAH11, and DNAH17) in ODAs from both organelles is unknown. By analyzing five male individuals who consulted for isolated infertility and displayed a loss of ODAs in their sperm cells but not in their respiratory cells, we identified bi-allelic mutations in DNAH17. The isolated infertility phenotype prompted us to compare the protein composition of ODAs in the sperm and ciliary axonemes from control individuals. We show that DNAH17 and DNAH8, but not DNAH5, DNAH9, or DNAH11, colocalize with a-tubulin along the sperm axoneme, whereas the reverse picture is observed in respiratory cilia, thus explaining the phenotype restricted to sperm cells. We also demonstrate the loss of function associated with DNAH17 mutations in two unrelated individuals by performing immunoblot and immunofluorescence analyses on sperm cells; these analyses indicated the absence of DNAH17 and DNAH8, whereas DNAH2 and DNALI, two inner dynein arm components, were present. Overall, this study demonstrates that mutations in DNAH17 are responsible for isolated male infertility and provides information regarding ODA composition in human spermatozoa

    Proviral role of human respiratory epithelial cell‐derived small extracellular vesicles in SARS‐CoV‐2 infection

    No full text
    Abstract Small Extracellular Vesicles (sEVs) are 50–200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu‐sEVs) produced by human nasal epithelial cells (HNECs) in SARS‐CoV‐2 infection. We show that uninfected HNECs produce mu‐sEVs containing SARS‐CoV‐2 receptor ACE2 and activated protease TMPRSS2. mu‐sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an ‘open’ conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu‐sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS‐CoV‐2 virions prone to entry into target cells using the ‘early’, TMPRSS2‐dependent pathway instead of the ‘late’, cathepsin‐dependent route. These results indicate that prefusion Spike priming by mu‐sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS‐CoV‐2 infection, but instead facilitates it
    corecore