38 research outputs found

    Effect of 5-hydroxytryptamine on the membrane potential of endothelial and smooth muscle cells in the pig coronary artery.

    No full text
    1. Many endothelium-dependent vasodilators hyperpolarize the endothelial cells in blood vessels. It is not known whether these hyperpolarizations are linked to nitric oxide synthesis or to an endothelium-derived hyperpolarizing phenomenon, since most of the vasodilators release both factors. In this context, we first verified that the endothelium-dependent relaxations induced by 5-hydroxytryptamine (5-HT) on pig coronary arteries are due only to the activation of the nitric oxide pathway. Then we studied the effects of 5-HT on membrane potential of endothelial and smooth muscle cells. 2. In the absence of endothelium, 5-HT caused a concentration-dependent contraction of coronary artery strips. No change of the smooth muscle cell membrane potential was observed during contraction to 1 microM 5-HT. 3. In the presence of 1 microM ketanserin to suppress the contractile effect of 5-HT, 5-HT induced concentration-dependent relaxation of endothelium-intact strips precontracted by 10 microM prostaglandin F2 alpha (PGF2 alpha). These relaxations were suppressed by 1 microM NG-nitro-L-arginine, an inhibitor of nitric oxide synthesis, showing that they were produced predominantly by nitric oxide. 4. In the presence of 1 microM ketanserin, 1 microM 5-HT did not change the smooth muscle cell membrane potential of strips precontracted by either 10 microM PGF2 alpha or by 10 microM acetylcholine (ACh). In the same conditions, 1 microM 5-HT caused a weak 2.6 +/- 0.4 mV hyperpolarization, of the endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS

    Epoxyeicosatrienoic acids activate a high-conductance, Ca(2+)-dependent K + channel on pig coronary artery endothelial cells.

    No full text
    1. Epoxyeicosatrienoic acids (EETs) have been described as endothelium-derived hyperpolarizing factors (EDHFs), based on their stimulatory effects on smooth muscle K+ channels. In order to reveal a putative autocrine effect of EETs on endothelial channels, we have studied the effects of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET and 14,15-EET) on the high-conductance, Ca(2+)-dependent K+ (BKCa) channel recorded in inside-out patches of primary cultured pig coronary artery endothelial cells. Currents were recorded in the presence of either 500 nm or 1 microM free Ca2+ on the cytosolic side of the membrane. 2. In 81% of experiments, EETs at < 156 nM, applied on the cytosolic side of the membrane, transiently increased BKCa channel open state probability (PO) without affecting its unitary conductance, thus providing evidence for direct action of EETs, without involvement of a cytosolic transduction pathway. 3. The four EET regioisomers appeared to be equally active, multiplying the BKCa channel PO by a mean factor of 4.3 +/- 0.6 (n = 15), and involving an increase in the number and duration of openings. 4. The EET-induced increase in BKCa channel activity was more pronounced with low initial PO. When the BKCa channel was activated by 500 nM Ca2+, application of EETs increased the initial PO value of below 0.1 by a factor of 5. When the channel was activated by 1 microM Ca2+, application of EETs increased the initial PO value by a factor of 3. 5. Our results show that EETs potentiate endothelial BKCa channel activation by Ca2+. The autocrine action of EETs on endothelial cells, which occurs in the same concentration range as their action on muscle cells, should therefore fully participate in the vasoactive effects of EETs, and thus be taken into account when considering their putative EDHF function

    Substance P and bradykinin activate different types of KCa currents to hyperpolarize cultured porcine coronary artery endothelial cells

    Get PDF
    Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization.The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone.Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 ÎĽm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization.Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 ÎĽm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA.Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation

    Ca(2+)-dependent non-selective cation and potassium channels activated by bradykinin in pig coronary artery endothelial cells.

    No full text
    1. Using the cell-attached and inside-out modes of the patch-clamp technique, we studied the Ca(2+)-dependent ionic channels activated by bradykinin in cultured pig coronary artery endothelial cells to further understand electrophysiological events underlying cellular activation. 2. In the cell-attached mode, bradykinin (94 nM) activated two types of Ca(2+)-dependent channels: a high conductance K+ channel (285 pS in high symmetrical K+), whose open state probability was increased by depolarization, and a lower conductance inwardly rectifying non-selective cation channel (44 pS in high symmetrical K+). 3. The 285 pS K+ channel was half-maximally activated by cytosolic Ca2+ levels of 1.6 and 4.5 microM at +10 and -30 mV, respectively. Such local concentrations should be reached in the presence of bradykinin, which induces a mean maximal cytosolic Ca2+ rise of 1.3 microM. 4. The 285 pS K+ channel was inhibited by d-tubocurarine, which acted by reducing the mean open time duration (flickering pattern), finally reducing the channel conductance. 5. Divalent cations such as Ca2+ could flow through the 44 pS non-selective cation channel, with nearly the same permeability (P) as monovalent cations (PK: PNa: PCa = 1:1:0.7). 6. The cation channel appeared to be more sensitive to Ca2+ than the K+ channel, with a half-maximal open probability induced by 0.7 microM Ca2+ on the intracellular side of the membrane. 7. In contrast to the K+ channel, the cation channel mean open time was clearly increased by bradykinin. This effect was delayed compared with the increase in the channel open state probability and was rapidly lost in the inside-out configuration. Caffeine also activated the cation channel but more transiently than bradykinin and without any effect on the open duration. 8. In the absence of extracellular Ca2+, the bradykinin-induced increase in cytosolic free Ca2+ was shortened temporally by 52% and reduced in amplitude by 88%, whereas the bradykinin-induced hyperpolarization was not significantly reduced in amplitude but was shortened by 70%, thus illustrating the major role of Ca2+ influx in endothelial cell activation by bradykinin. 9. We conclude that bradykinin activates two types of Ca(2+)-dependent channels in coronary endothelial cells: a high conductance K+ channel regulated by membrane potential, and an inwardly rectifying cation channel allowing Ca2+ entry, the cation channel being about 6 times more sensitive to Ca2+ than the K+ channel. The increase in cation channel open state probability involves an increase in open number, like the K+ channel, but also involves a rise in channel open duration. Ca2+ entry via cation channels could contribute to increase the cytoplasmic Ca2+ level, activate Ca(2+)-dependent K+ channels, thus triggering membrane hyperpolarization when the endothelial cell is stimulated by a vasoactive agonist such as bradykinin
    corecore