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Abstract—This paper presents an algorithm for generating
scale-free networks with adjustable clustering coefficient. The
algorithm is based on a random walk procedure combined with
a triangle generation scheme which takes into account genetic
factors; this way, preferential attachment and clustering control
are implemented using only local information. Simulations are
presented which support the validity of the scheme, characteriz-
ing its tuning capabilities.

I. INTRODUCTION

Network modelling has become a very active research field
after the discovery that many different complex systems share
some essential common features which can be gathered in
a network model [7]. Although network nodes and links can
represent very different entities depending on the phenomenon
being analyzed, still some common characteristics seem to be
ubiquitous in many models. For instance, common patterns
usually appear in social networks ([3], [24], [20]), biology
networks ([35], [14]), technological networks ([11], [5]) or
information networks ([2], [25])1. Many of these features are
non-trivial so that the traditional Erdös-Rènyi (ER) model [9]
for random graphs is not sufficient to explain the behavior of
these systems.

The first feature appearing in real networks which was not
gathered by the ER model was the small world effect, defined
by two factors: slow increase of network diameter with net-
work growth and the existence of a unexpectedly high number
of triangles in the network (clustering). In order to mimic
these properties, Watts and Strogatz proposed a new model in
[34]. Nevertheless, this model could not represent an additional
property also found in many real networks: the distribution of
the number of neighbors (degree distribution) follows a power-
law, which is very different from the distributions predicted by
early models (e.g., exponential distribution in the ER model).

In [2] the Barabási-Albert (BA) network generation model
was presented where network growing nature and preferential
attachment were proved to be two essential features for
obtaining scale-free networks which follow a power-law in
the degree distribution. The preferential attachment stands
for the fact that new vertices added to the network are
attached preferentially to high-degree vertices. In case that the

1This classification of networks according to its nature was proposed by
Newman in [22] where a larger number of references for each type of network
can be found.

preference is linear, the probability to get connected to a given
vertex is proportional to its degree. The BA model implements
this preferential attachment using global network information
to compute such probability:

pi =
ki∑n
j=1 kj

, n = total number of nodes. (1)

The existence of a scale-free structure in many real networks
has motivated the appearance of a number of new network
models trying to reproduce at least one of the already men-
tioned three main characteristics of real networks (clustering,
long tail degree distribution, short diameter)2. Different ap-
proaches have been used: some models are based on a static
network size [23], [6], while others work on growing networks
[2], [13], [33].

In general, it is expected that the process of adding a new
vertex in real world networks would not require the availability
of such global information. Along this line, several authors
have studied alternative local schemes (employing rules that
only involve a vertex and its neighbors) to generate scale-free
networks without the use of global parameters [19], [29], [33],
[18], [17], [8], [15].

Among them, the use of random-walkers to select node
attachment in a network-growth algorithm has been suggested
in [1] and successfully employed in [32], [27], [10]. In general,
the use of the proposed schemes has been justified on the
assumption that a random walk of arbitrary length l will
end up on a vertex i of degree ki with probability given in
equation (1), i.e., random walks are assumed to generate a pure
preferential selection procedure (to be used as the basis of a
preferential attachment scheme). The analytical characteriza-
tion of these random walk models has been performed under
some mean-field hypotheses, so that preferential attachment
is studied but no other network features are considered. In
[33] the correlation between clustering and degree is analysed
also under the mean-field hypotheses, but the tuning of the
clustering coefficient is not addressed.

In this paper, alternative random walk selection schemes
are presented which allow for the control of both preferential

2Alternatively, some models try to mimic other network properties. For
example, the goal of the model presented in [16] is to ensure that the network
shows an arbitrary subgraph distribution. In [31], the property to be reproduced
is the existence of communities like the ones observed in real social networks;
this could be considered as a generalization of clustering control.
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attachment and clustering coefficient in the process of growing
a scale-free network. The schemes depend on the transition
probability distribution of the random walk in a manner
that each path sample may have a different size due to a
genetic factor. It is shown that the appropriate selection of
the mentioned transition probability distribution allows for the
tuning of the clustering coefficient of the generated network.

The paper is organized as follows. Section II starts pre-
senting a motivation and the goals of the proposed model for
network generation; then such model is described in detail.
In Section III simulation results supporting the validity of the
model are presented. Finally, Concluding Remarks and Future
Work lines are summarized in Section IV.

II. MODEL

A. Motivation and goals

Many real world networks are very complex systems gov-
erned by several fundamental characteristics. So far, existing
network models can only gather some of these features, which
may or not be sufficient for the aim of the analysis. Hence,
the construction of new more elaborated models addressing
the emergence and behavior of additional characteristics is
a relevant challenge. As mentioned in the Introduction, one
big step in terms of explaining complex networks was the
BA Model, where the emergence of a power-law in the
degree distribution was explained via two simple assumptions:
growing and preferential attachment (PA). The BA model
has been a fundamental reference although it presents some
limitations.

On the one hand, several authors [10], [27] have pointed
out the difficulties of a practical implementation of preferential
attachment policies: as defined in the BA model, when a new
node is about to join the network, it requires to know the
degree of all nodes in the whole network in order to calculate
the probability of linking to each existing node. This scheme
does not seem to successfully explain the behavior of real-life
stages, such as a blogger linking to a web page or a person
making new friends (obviously, they do not have or do not
employ global network structure information). A new model
based only on local schemes was presented in [27], suggesting
that PA can be obtained from a random walk (at least in an
approximate manner). In [10] this random walk based model
is generalized so that the degree distribution can have an
exponent different from γ = 3 if a certain fraction pv of edges
is created purely at random (i.e, the new node is linked with a
randomly chosen existing node, without implementing a walk).

On the other hand, there is also one important feature
which cannot be taken into account when employing the
original BA model. Although this model performs better than
Erdös-Rényi (ER) model concerning the degree distribution,
it cannot produce the high clustering coefficient which has
been observed in many real networks3 (see table I, presenting
results from [21] for online social networks). The clustering
coefficient of real networks is known to be higher than the one

3Although there are no analytical results for the clustering coefficient in
the BA model, it is known ([1], [22]) that it decays with network size C ∼
N−0.75 while in real networks C is independent from N .

Table I
CLUSTERING COEFFICIENT IN REAL NETWORKS, AND IN MODELS OF THE

NETWORKS OF THE SAME SIZE

Network C C/CER C/CBA

Flickr 0.313 47.2 25.2
LiveJournal 0.330 119.0 17.8

Orkut 0.171 7.24 5.27
Youtube 0.136 36.9 69.4

provided by a purely random model, and its value depends on
the nature of the network. It usually takes high values for social
networks (for example C = 0.79 for imdb actor network [34])
but there are some networks which exhibit a power-law with
a much lower clustering level (C = 0.011 for a P2P network
[26]). In [13] a mechanism for triangle formation was proposed
which allowed the control of the clustering coefficient; such
mechanism is furtherly developed and employed in this paper.

In [12] some characteristics in the social networks which
are related to genetic factors are presented. Concretely, it is
shown that the clustering coefficient is one of those heritable
network metrics. In fact, there are people who are very likely
to introduce friends to any other friends, whereas some other
people prefer to keep their friends apart from each other.

In this paper, a new network growing scheme is presented
where a triangle formation scheme is furtherly developed to
include a genetic factor as the basis for a clustering control
mechanism. This genetic factor in the nodes (known to happen
in real networks) combines in a very adequate manner with a
random walk based node selection procedure, so that only local
information is employed in the whole edge addition process.

B. Model description

As mentioned before, the main aim of the model proposed in
this paper is to generate scale-free networks whose clustering
coefficient can be controlled by using only local information.
The scale-free network is generated via a growing scheme
which employs random walks as a local approximation to the
preferential attachment criterion. The model proposed here is
grounded on a modification of the model presented by Evans
and Saramäki (ES model) [27]. The ES model is defined as
follows:

• Initial condition: start with a network of n0 vertices.
• Growth: each time step a vertex and m edges are added

to the network. Note that m ≤ n0.
• Linking by a random walk (RW): the new vertex vnew

is joined with m existing vertices which are selected the
following way: a random existing vertex vs is chosen,
then a l-step random walk starting from vs is performed;
the arrival vertex ve obtained at the end of the walk is
linked to vnew.

Our model makes use of some random walk properties which
happen to be very useful to control the appearance of triangles
in the network. First of all, let us consider vnew has been linked
to a first selected network node vs; obviously this link does
not generate any triangle. Now it can be seen that a l = 1 walk
starting from vs will provide a new node that, if also linked
to vnew, will generate a triangle. This way, selecting nodes
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Figure 1. The clustering coefficient is controlled by the following mechanism:
if a l = 1 walk is carried out from the last joined vertex vs, we ensure that
a triangle is formed. However, if l = 2 we only generate a triangle if vs and
ve are already connected.

via successive l = 1 walks would add m− 1 triangles to the
network. This fact suggests the possibility of implementing
a triangle generation control scheme based on selecting new
starting random points for the next walk (avoiding triangle for-
mation), proportionally combined with successive l = 1 walks
(forcing triangle formation). This approach was the first to be
analysed: such control mechanism does not behave accurately
when reproducing low levels of clustering coefficient. In fact,
for a given clustering control parameter, a significant variance
was observed, violating our design principle of fine clustering
coefficient control (numerical results of this behavior will be
showed in section III).

Alternatively, random walks with l = 2 were employed.
Note that if l = 2 is chosen almost no triangle will be added
to the network. In fact, if the seed network with n0 vertices
does not have any triad, it is straightforward to demonstrate
that no triangle will be added (the probability of vs and ve
being already connected will be zero). The implications of
using l = 1 or l = 2 are illustrated in Figure 1.

Therefore, controlling the number of l = 1 and l = 2
random walks allows for an accurate tuning of the number
of triangles added to the network. This might be implemented
by just assigning p1 probability to l = 1 walks and 1− p1 for
the l = 2 case. However, we propose to include this control in
a node attribute which is assigned at node’s “birth”, inspired
by the already mentioned results in [12]. In our proposal, any
vertex p is assigned a probability p(vi) which reflects the
genetic factor mentioned there upon a certain distribution f(p).
This probability remains constant during vertex life and will
determine the length of the random walks starting from such
node (i.e., a 1-step walk happens with probability p(vs), being
vs the last linked vertex; a 2-step walk is selected otherwise).

Following the explained principles our algorithm is defined
as follows:

1) Start with a network of n0 vertices. Each vertex is
assigned an attribute p(vi), i = 1 . . . n0 according to
the random distribution f(p).

2) A vertex vs is chosen randomly.
3) A random walk l > 1 is performed from vs, randomly

choosing at each step a neighbor of the current vertex.
The arrival vertex ve is marked.

4) Start a new walk from the last marked vertex vl. With
probability p(vl) this will be 1-step walk; otherwise will

be a 2-step walk. Mark the arrival vertex.
5) Repeat step 4 m− 1 times. Note that m ≤ n0.
6) Add one vertex to the network. Add m links between

the new vertex and the m marked nodes. Assign to the
new vertex a probability p(vi) according to f(p) 4.

7) Repeat steps 2 to 6 (n− n0 times).
Hence, the algorithm has the following design parameters:
number of nodes n, number edges to be attached per vertex
m, and a probability distribution f(p). Note that, as it is usual
in growing network models, m allows to control the average
degree since 〈k〉 = 2m. Concerning the distribution f(p),
in order to simplify the interpretation of results, a binomial
distribution has been chosen to illustrate the scheme in this
paper; so there is a fraction cc of nodes with p(vi) = 1 having
the rest of the nodes p(vi) = 0. It is expected that different
distributions may lead to different community structures of the
resulting networks.

Another interesting issue is the selection of l > 1 for the
first walk, since it is different from previous random walk
based models. Although in [27] is stated (and supported by
numerical simulations) that a walk of length 1 should be
enough to produce a valid preferential attachment, we have
found problems with some networks, where there is still a
significant correlation between the neighbors average degree
and how frequently a certain vertex is marked by a 1-step walk
(in pure preferential attachment, the vertex selection criterion
is not biased by the vertex neighbors degrees).

III. SIMULATION RESULTS

A number of simulations have been carried out to check
the performance of the proposed model along its two main
goals: generating a power-law in the degree distribution and
controlling the clustering coefficient5.

First of all, random walk models require the construction
of an initial seed connected network with n0 vertices; it is
important to point out the influence of the topology of such
initial network on the final outcome. As it also happens in
the BA model, a non-zero probability must be assigned to
the initial isolated vertices (in most implementations this is
done by setting a certain parameter a in the distribution so
that p(k) ∼ k + a). In order not to bias the first walk,
a regular lattice must be chosen where the degree k0 is
equal for all n0 nodes (this is equivalent to the mentioned a
parameter in the BA model). Besides, even if we start with a
network accomplishing those requirements, the performance

4The reason why any chosen vertex is first marked instead of directly linked
to the new vertex (in step 3 or 4) is because it is desirable for the network to
remain unchanged during the addition of the whole m edges. This procedure is
common in many implementations of scale-free networks models such as BA,
since the hypothesis of the network remaining unchanged during the vertex
addition process is used in the mean-field equations model which supports
that preferential attachment produces power-laws in degree distribution [22].
In random walk based models, this unchanged network hypothesis is even
more important, since the addition of an edge to the last visited vertex can
severely change the trajectory of the following random walk.

5In our simulations ci =

{
2eij

ki(ki−1)
ki > 1

0 ki ≤ 1
, and C = 1

N

∑
i ci. There

is also a different clustering degree definition for the global graph in [4] but
it is not used in this paper.
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Figure 2. An inappropriate election of n0 may drive to a “winner-takes-all”
effect. In this simulation m = 1 and n0 = 2, produce a star-like graph where
a power-law degree distribution cannot emerge by a growing process based
on preferential attachment.

Figure 3. Simulation with N = 103, m = 2, using a full connected graph
of n0 = 20 nodes as a seed. It clearly produces a “step-like” deviation from
a power-law tail in the cumulative degree distribution.

of the model might be affected by the values selected for
n0 and k0. Precisely, if n0 is too small, there is a high
probability of a so called “winner-takes-all” phenomenon to
happen as it can be seen in Figure 2. On the other hand,
choosing a large value for k0 might also create some undesired
effects. In this case, choosing a fully connected graph (i.e
k0 = n0 − 1) might produce a deviation from the power-law
behavior in the degree distribution as can be seen in Figure 3.
To overcome this situation, a ring graph has been designed,
with n0 = max(10,m), which seems to behave properly in
most of the stages; hence, all the simulation results presented
below make use of this seed. In addition, as pointed out in the
model description, a length l = 7 for the first walk per added
node has been used, in order to avoid the dependence on the
neighbors degree during the selection process.

A. Scale-free emergence

Once a proper selection procedure of the initial seed has
been settled, we now focus on the first design criterion: the

Figure 4. A power-law is obtained in the degree distribution, very close
to BA pure preferential attachment model. These results persist under any
change in the clustering control parameter cc.

emergence of a scale-free network during the growing process.
In Figure 4, it can be seen that a power-law is produced
(original BA model6 simulation is also included, in order to
allow comparison). In addition, it is shown that this behavior
does not depend on the value assigned to the clustering control
parameter cc, as it can be seen in the representation of results
for the two extreme values of this parameter. This power-law
regime is independent from cc as well as from the size of the
network n and the average degree 〈k〉 = 2m; hence, the model
proposed here behaves like other preferential attachment based
models [2], [10].

B. Clustering coefficient control

As mentioned earlier, the control of the clustering coefficient
is performed by changing the value of the probability cc that a
node is assigned “1” length value in the binomial distribution
characterizing genetic factors. We start by presenting the
simulation results which correspond to the first (more intuitive)
approach mentioned in Section II; such approach suggested
the use of a new random starting vertex for avoiding triangle
formation. The results show that this approach drives to a high
level of variance for small values of cc as it can be seen
in Figure 5. On the other hand, the second approach based
on a 2-step mechanism produces a much better performance
as shown in Figure 6. Both figures show the clustering
coefficient dependence on networks with N = 104 nodes and
〈k〉 = 4. Mean clustering coefficient (blue points) and standard
deviation (red bars), obtained for twenty runs for each value
of cc, are also presented.

Two additional tests were performed for the proposed model
regarding its control capability of the clustering coefficient.
The first test proves that the clustering coefficient remains
constant for a given cc if the network keeps growing. This
result is supported by Figure 7, where the degree is log-plot
and the results from N = 1600 to N = 50 ·103 are presented.

6For the BA model a = 2 was selected so that it did agree with our model
where a ring (i.e k0 = 2) is used as a seed.
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Figure 5. Clustering coefficient control by the new random starting point
strategy. The model shows a significant level of variance (red bars represent
standard deviation for 20 runs) for small values of cc.

Figure 6. Clustering coefficient control by the 2-step walk strategy. In
this case, the model shows a much better performance following a linear
relationship characterized by C = 0.74986 · cc with R² = 0.99965167.

Figure 7. Clustering coefficient variation with network size N , for fixed
m = 2. Results are presented for cc = 0 (yellow), cc = 0.5 (orange) and
cc = 1 (blue).

Figure 8. Clustering coefficient decay with average degree.

Figure 9. Clustering coefficient control problem for high degree nodes
(same simulation parameters as in Figure 6). Nodes are divided into 3 groups
according to their degree: the clustering control coefficient cc has smaller
influence on the most connected nodes.

The last simulation performed was intended to study the
variation of the maximum clustering coefficient that can be
generated by the model, that is ccmax, as m is increased. The
results presented in Figure 8 show a decay of the clustering
coefficient as m increases; this expected result shows a be-
havior equivalent to other tunable clustering network models
[13], [28]. In fact, some authors have proposed the use of an
alternative clustering coefficient definition since large values
of m do bias the degree-clustering correlation in scale-free
networks when the standard definition of clustering coefficient
is employed. The problem can be summarized as follows: very
high-degree nodes (so called “hubs”) have very few chances
of having a high clustering coefficient; this is due to the fact
that it would require most of their neighbors to be connected
among themselves, producing a full graph around the hub,
which does not fit in a scale-free structure. To support this
intuition, a simulation has been performed, whose results are
presented in Figure 9, showing that the hubs do not reach
high values of clustering coefficient. A new formulation for
the clustering coefficient to avoid this degree bias has been
proposed in [30]. The performance of our model on this new
definition has not been analysed yet.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, a new scheme for generating scale-free net-
works with power law degree distribution and tunable cluster-
ing coefficient has been presented. The scheme is grounded
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on a combination of random walk and triangle generation
procedures together with a genetic factor implementation.
These elements allow for an accurate tuning of the clustering
coefficient, making use of local information exclusively. As
a consequence, this proposed scheme seems to explain the
generation of real networks in a more realistic manner. The
presented simulations support the validity of the scheme,
characterizing its tuning capabilities.

Further research is being carried out in several directions.
On the one hand, the sensitivity of preferential attachment
policies to the random walk length l is being analysed.
On the other hand, some work is also being developed in
reproducing additional network metrics by using different
f(p) distributions for vertex characterization. An appropriate
selection of f(p) can potentially drive to a network where
not only average clustering coefficient is controlled, but also
the whole clustering coefficient distribution over the network.
The distribution f(p) could also be made to depend on some
other network metrics (e.g., the degree, so that f(p, k)) in
order to reproduce some correlations between network metrics
observed in real networks. Finally, it is worth mentioning
that generalizations of this model, based on a network growth
driven exclusively by local interaction and intrinsic network
attributes, can be implemented in different ways. For instance,
some variants proposed in previous random walk models [10]
can be easily incorporated to the network model presented
here.
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