7 research outputs found

    PEPOP 2.0: new approaches to mimic non-continuous epitopes

    No full text
    International audienceBACKGROUND:Bioinformatics methods are helpful to identify new molecules for diagnostic or therapeutic applications. For example, the use of peptides capable of mimicking binding sites has several benefits in replacing a protein which is difficult to produce, or toxic. Using peptides is less expensive. Peptides are easier to manipulate, and can be used as drugs. Continuous epitopes predicted by bioinformatics tools are commonly used and these sequential epitopes are used as is in further experiments. Numerous discontinuous epitope predictors have been developed but only two bioinformatics tools have been proposed so far to predict peptide sequences: Superficial and PEPOP 2.0. PEPOP 2.0 can generate series of peptide sequences that can replace continuous or discontinuous epitopes in their interaction with their cognate antibody

    PEPOP: new approaches to mimic non-continous epitopes

    No full text
    Bioinformatics methods are helpful to identify new molecules for diagnostic or therapeutic applications. For example, the use of peptides capable of mimicking binding sites has several benefits as replacing a protein difficult to produce, or toxic. Using peptides is less expensive. Peptides are easier to manipulate, and can be used as drugs. Continuous epitope predicted by bioinformatics tools are commonly used and these sequential epitopes are used as such in further experiments. Numerous discontinuous epitope predictors have been developed but only two bioinformatics tools proposed so far to predict peptide sequences: Superficial and PEPOP. PEPOP can generate series of peptide sequences that can replace continuous or discontinuous epitopes in their interaction with their cognate antibody. We have developed an improved version of PEPOP dedicated to answer to the experimentalists' need for a tool able to handle proteins and to turn them into peptides. The PEPOP web site has been reorganized by peptide prediction category and is therefore better formulated to experimental designs. Since the first version of PEPOP, 32 new methods of peptide design were developed. In total, PEPOP proposes 35 methods in which 34 deal specifically with discontinuous epitopes, the most represented epitope type in nature. We present the user-friendly, well-structured web-site of PEPOP and its validation through the use of predicted immunogenic or antigenic peptides mimicking discontinuous epitopes in different experimental ways. PEPOP proposes 35 methods of peptide design to guide experimentalists in using peptides potentially capable of replacing the cognate protein in its interaction with an Ab

    CXC Ligand 5 Is an Adipose-Tissue Derived Factor that Links Obesity to Insulin Resistance

    No full text
    International audienceWe show here high levels of expression and secretion of the chemokine CXC ligand 5 (CXCL5) in the macrophage fraction of white adipose tissue (WAT). Moreover, we find that CXCL5 is dramatically increased in serum of human obese compared to lean subjects. Conversely, CXCL5 concentration is decreased in obese subjects after a weight reduction program, or in obese non-insulin-resistant, compared to insulin-resistant, subjects. Most importantly we demonstrate that treatment with recombinant CXCL5 blocks insulin-stimulated glucose uptake in muscle in mice. CXCL5 blocks insulin signaling by activating the Jak2/STAT5/SOCS2 pathway. Finally, by treating obese, insulin-resistant mice with either anti-CXCL5 neutralizing antibodies or antagonists of CXCR2, which is the CXCL5 receptor, we demonstrate that CXCL5 mediates insulin resistance. Furthermore CXCR2-/- mice are protected against obesity-induced insulin resistance. Taken together, these results show that secretion of CXCL5 by WAT resident macrophages represents a link between obesity, inflammation, and insulin resistance
    corecore