4 research outputs found

    Spectroscopie de luminescence et Raman de matériaux moléculaires cristallins et modélisation par la théorie de la fonctionnelle de la densité

    Full text link
    Cette thèse présente une série de mesures spectroscopiques (Raman, luminescence) de composés du platine(II) et de l’or(I). Les spectres Raman sont mesurés à température ou pression variable et les transitions vibrationnelles sont attribuées à partir d’une comparaison avec des calculs DFT. Cette approche est particulièrement utile pour des complexes de métaux de transition avec des ligands polyatomiques et un accord quantitatif est obtenu pour certains composés. Des interactions faibles comme les interactions aurophiles entre centres or(I) sont un défi pour les calculs DFT et cela est démontré par la modélisation de xanthates de l’or(I) et de dithiocarbamates de l’or(I). Ces interactions aurophiles sont étudiées par spectroscopie de luminescence à température ou pression variable pour certains dithiocarbamates de l’or(I). Des résultats expérimentaux montrent de grandes variations comme un déplacement bathochromique du maximum de luminescence de -120 cm-1/kbar pour le diéthyldithiocarbamate de l’or(I) avec des chaînes aurophiles linéaires ou une variation de la largeur de la bande de luminescence pour ce même composé. Ces effets sont analysés avec des calculs DFT qui montrent que les distances or(I)-or(I) ainsi que les angles le long de la chaîne sont importants pour les variations et propriétés observées. Les distances intermétalliques sont déterminées par diffraction des rayons-X à température variable pour certains composés de l’or(I) et du platine(II) et la combinaison avec les spectres de luminescence aux mêmes conditions permet de comparer les interactions pour les deux métaux différents. Un modèle empirique de la littérature est utilisé et appliqué quantitativement aux systèmes de l’or(I). Les effets semblent généralement plus petits pour les composés de l’or(I) que pour ceux du platine(II) de la littérature et cette thèse présente la première analyse quantitative de tels effets. La combinaison de structures cristallographiques, de spectres expérimentaux et de calculs DFT amène une compréhension plus quantitative d’effets de structure électronique, moléculaire et supramoléculaire qui déterminent des propriétés spectroscopiques comme l’énergie du maximum de luminescence ou la largeur de la bande de luminescence.This thesis presents a series of spectroscopic measurements (Raman, luminescence) of platinum(II) and gold(I) compounds. The Raman spectra are measured at variable temperature or pressure and the vibrational transitions are assigned by comparison with DFT calculations. This approach is especially useful for metal complexes with polyatomic ligands and a quantitative agreement is achieved for some compounds. Weak interactions such as aurophilic bonding between gold(I) centers are a challenge for DFT calculations as demonstrated by the modeling of gold(I) xanthates and gold(I) dithiocarbamates. These aurophilic interactions are analyzed by variable-temperature and variable-pressure luminescence spectroscopy for some gold(I) dithiocarbamates. Experimental results show great variations such as a bathochromic shift of the luminescence band maximum of -120 cm-1/kbar for the gold(I) diethyldithiocarbamate with linear gold(I) chain structures or a variation of the luminescence bandshape for this very same compound. These effects are analyzed with DFT calculations showing that the gold(I)-gold(I) distances as well as the angles along the chain are important for the observed variations and properties. The intermetallic distances are determined by X-ray diffraction at variable temperature for some gold(I) and platinum(II) compounds and the combination with luminescence spectra at the same conditions allows to compare the interactions for the two different metals. An empirical model from the literature is used and quantitatively applied to the gold(I) systems. Effects seem generally to be smaller for the gold(I) compounds than for platinum(II) compounds from the literature and this thesis presents the first quantitative analysis of such effects, again compared to DFT calculations. The combination of crystal structures, experimental spectra and DFT models leads to a more quantitative understanding of electronic, molecular and supramolecular structural effects determining spectroscopic properties such as luminescence band maxima or bandshapes

    Variable-pressure luminescence and Raman spectroscopy of molecular transition metal complexes : spectroscopic effects originating from small, reversible structural variations

    Full text link
    The past ten years have seen a significantly increasing number of published crystal structures for molecular transition metal complexes at variable pressure, providing quantitative information on structural variations. Spectroscopic measurements at variable pressure have been reported over the past 60 years for a variety of complexes, but luminescence measurements were mostly limited to intense signals until early in this century. The combination of variable-pressure structure variations with spectroscopic trends can lead to detailed new insight on a variety of aspects of electronic structure. This approach holds promise for the in-depth study of many categories of functional materials

    Mononuclear manganese( iii ) complexes with reduced imino nitroxide radicals by single-electron transfer and intermolecular hydrogen bonds as an intramolecular structural driving force

    No full text
    International audienceManganese(III) complexes were synthesized by one-electron transfer from a Mn(II) ion to the imino nitroxide radical 2-(2-imidazolyl)-4,4,5,5-tetramethylimidazoline-1-oxyl (IMImH) in methanol. After the manganese ions attained the +III oxidation state, the imino nitroxide radicals were found to be irreversibly reduced in the complexes. Depending on the synthesis conditions, two complexes differing by their counter-anions were isolated as single crystals. These are [Mn(IMHIm)2(MeOH)2]ClO4·H2O (1) and [Mn(IMHIm)2(MeOH)2]PF6 (2), which crystallize in the monoclinic P21/n and triclinic P1 space groups, respectively. The two complexes show Jahn–Teller distortions typical of Mn(III) centres and only reduced radicals are coordinated, as indicated by the N–O bond lengths and electroneutrality. In addition, the crystal structure analyses reveal two intermolecular hydrogen bonding networks. One involves counter-anions, water molecules and reduced radicals, and the other involves coordinated methanol molecules and imidazole moieties. These intermolecular interactions are driving forces that stabilize the two complexes. They also suggest that the tautomer is in the amino imine-oxide form after reduction of the radical and reveal the deprotonation of the imidazole ring, which is required for electroneutrality. This assessment is supported by single-crystal X-ray diffraction, EPR and Raman spectroscopy as well as magnetic and electrochemical studies
    corecore