22 research outputs found

    MLL leukemia-associated rearrangements in peripheral blood lymphocytes from healthy individuals

    Get PDF
    Chromosomal translocations are characteristic of hematopoietic neoplasias and can lead to unregulated oncogene expression or the fusion of genes to yield novel functions. In recent years, different lymphoma/leukemia-associated rearrangements have been detected in healthy individuals. In this study, we used inverse PCR to screen peripheral lymphocytes from 100 healthy individuals for the presence of MLL (Mixed Lineage Leukemia) translocations. Forty-nine percent of the probands showed MLL rearrangements. Sequence analysis showed that these rearrangements were specific for MLL translocations that corresponded to t(4;11)(q21;q23) (66%) and t(9;11) (20%). However, RT-PCR failed to detect any expression of t(4;11)(q21;q23) in our population. We suggest that 11q23 rearrangements in peripheral lymphocytes from normal individuals may result from exposure to endogenous or exogenous DNA-damaging agents. In practical terms, the high susceptibility of the MLL gene to chemically-induced damage suggests that monitoring the aberrations associated with this gene in peripheral lymphocytes may be a sensitive assay for assessing genomic instability in individuals exposed to genotoxic stress

    Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia

    No full text
    Abstract Mutations and chromosomal translocations occur in leukemic cells that result in elevated expression or constitutive activation of various growth factor receptors and downstream kinases. The Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways are often activated by mutations in upstream genes. The Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways are regulated by upstream Ras that is frequently mutated in human cancer. Recently, it has been observed that the FLT-3 and Jak kinases and the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase are also frequently mutated or their expression is altered in certain hematopoietic neoplasms. Many of the events elicited by the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways have direct effects on survival pathways. Aberrant regulation of the survival pathways can contribute to uncontrolled cell growth and lead to leukemia. In this review, we describe the Raf/MEK/ ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT signaling cascades and summarize recent data regarding the regulation and mutation status of these pathways and their involvement in leukemia. Leukemia (2008) 22, 686–707; doi:10.1038/leu.2008.26; published online 13 March 2008 Keywords: Raf; PI3K; Akt; signal transduction; inhibitors

    The Raf/MEK/ERK pathway can govern drug resistance, apoptosis and sensitivity to targeted therapy.

    No full text
    The effects of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways on proliferation, drug resistance, prevention of apoptosis and sensitivity to signal transduction inhibitors were examined in FL/ΔAkt-1:ER*(Myr(+)) + ΔRaf-1:AR cells which are conditionally-transformed to grow in response to Raf and Akt activation. Drug resistant cells were isolated from FL/ΔAkt-1:ER*(Myr(+)) + ΔRaf-1:AR cells in the presence of doxorubicin. Activation of Raf-1, in the drug resistant FL/ΔAkt-1:ER*(Myr(+)) + ΔRaf-1:AR cells, increased the IC(50) for doxorubicin 80-fold, whereas activation of Akt-1, by itself, had no effect on the doxorubicin IC(50). However, Akt-1 activation enhanced cell proliferation and clonogenicity in the presence of chemotherapeutic drugs. Thus the Raf/MEK/ERK pathway had profound effects on the sensitivity to chemotherapeutic drugs, and Akt-1 activation was required for the long-term growth of these cells as well as resistance to chemotherapeutic drugs. The effects of doxorubicin on the induction of apoptosis in the drug resistant cells were enhanced by addition of either mTOR and MEK inhibitors. These results indicate that targeting the Raf/MEK/ERK and PI3K/Akt/mTOR pathways may be an effective approach for therapeutic intervention in drug resistant cancers that have mutations activating these cascades

    Erucylphosphohomocholine, the first intravenously applicable alkylphosphocholine, is cytotoxic to acute myelogenous leukemia cells through JNK- and PP2A-dependent mechanisms

    No full text
    Alkylphospholipids and alkylphosphocholines (APCs) are promising antitumor agents, which target the plasma membrane and affect multiple signal transduction networks. We investigated the therapeutic potential of erucylphosphohomocholine (ErPC3), the first intravenously applicable APC, in human acute myelogenous leukemia (AML) cells. ErPC3 was tested on AML cell lines, as well as AML primary cells. At short (6-12 h) incubation times, the drug blocked cells in G2/M phase of the cell cycle, whereas, at longer incubation times, it decreased survival and induced cell death by apoptosis. ErPC3 caused JNK 1/2 activation as well as ERK 1/2 dephosphorylation. Pharmacological inhibition of caspase-3 or a JNK 1/2 inhibitor peptide markedly reduced ErPC3 cytotoxicity. Protein phosphatase 2A downregulation by siRNA opposed ERK 1/2 dephosphorylation and blunted the cytotoxic effect of ErPC3. ErPC3 was cytotoxic to AML primary cells and reduced the clonogenic activity of CD34(+) leukemic cells. ErPC3 induced a significant apoptosis in the compartment (CD34(+) CD38(Low/Neg) CD123(+)) enriched in putative leukemia-initiating cells. This conclusion was supported by ErPC3 cytotoxicity on AML blasts showing high aldehyde dehydrogenase activity and on the side population of AML cell lines and blasts. These findings indicate that ErPC3 might be a promising therapeutic agent for the treatment of AML patients
    corecore