211 research outputs found

    Digital Supply Chain Twins in Urban Logistics System – Conception of an Integrative Platform

    Get PDF
    Current trends in urban areas pose several challenges to city logistics stakeholders while also offering opportunities for optimization. With its analytics, modelling and simulation capabilities, the Digital Supply Chain Twin (DSCT) technology provides a possibility to optimize urban logistics processes. However, a number of barriers have limited the implementation of holistic DSCTs so far. An integrative, collaborative platform could decrease these barriers. By applying design science research methodology and expert interviews, this paper develops an architecture for a high-level cross-institutional platform for the generation of DSCTs. This framework includes a modular design of the platform through eight functional modules. The platform can facilitate the implementation of DSCTs for urban stakeholders and thus optimize urban logistics processes

    Acute Alterations of Somatodendritic Action Potential Dynamics in Hippocampal CA1 Pyramidal Cells after Kainate-Induced Status Epilepticus in Mice

    Get PDF
    Pathophysiological remodeling processes at an early stage of an acquired epilepsy are critical but not well understood. Therefore, we examined acute changes in action potential (AP) dynamics immediately following status epilepticus (SE) in mice. SE was induced by intraperitoneal (i.p.) injection of kainate, and behavioral manifestation of SE was monitored for 3–4 h. After this time interval CA1 pyramidal cells were studied ex vivo with whole-cell current-clamp and Ca2+ imaging techniques in a hippocampal slice preparation. Following acute SE both resting potential and firing threshold were modestly depolarized (2–5 mV). No changes were seen in input resistance or membrane time constant, but AP latency was prolonged and AP upstroke velocity reduced following acute SE. All cells showed an increase in AP halfwidth and regular (rather than burst) firing, and in a fraction of cells the notch, typically preceding spike afterdepolarization (ADP), was absent following acute SE. Notably, the typical attenuation of backpropagating action potential (b-AP)-induced Ca2+ signals along the apical dendrite was strengthened following acute SE. The effects of acute SE on the retrograde spread of excitation were mimicked by applying the Kv4 current potentiating drug NS5806. Our data unveil a reduced somatodendritic excitability in hippocampal CA1 pyramidal cells immediately after acute SE with a possible involvement of both Na+ and K+ current components

    Long non-coding RNA in health and disease

    Get PDF
    Long non-coding RNAs (lncRNAs) interact with the nuclear architecture and are involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, gene activation, gene repression, lineage determination, and cell proliferation, all by regulating gene expression. Understanding the lncRNA regulation of transcriptional or post-transcriptional gene regulation expands our knowledge of disease. Several associations between altered lncRNA function and gene expression have been linked to clinical disease phenotypes. Early advances have been made in developing lncRNAs as biomarkers. Several mouse models reveal that human lncRNAs have very diverse functions. Their involvement in gene and genome regulation as well as disease underscores the importance of lncRNA-mediated regulatory networks. Because of their tissue-specific expression potential, their function as activators or repressors, and their selective targeting of genes, lncRNAs are of potential therapeutic interest. We review the regulatory mechanisms of lncRNAs, their major functional principles, and discuss their role in Mendelian disorders, cancer, cardiovascular disease, and neurological disorders

    Voltage Sensor Inactivation in Potassium Channels

    Get PDF
    In voltage-gated potassium (Kv) channels membrane depolarization causes movement of a voltage sensor domain. This conformational change of the protein is transmitted to the pore domain and eventually leads to pore opening. However, the voltage sensor domain may interact with two distinct gates in the pore domain: the activation gate (A-gate), involving the cytoplasmic S6 bundle crossing, and the pore gate (P-gate), located externally in the selectivity filter. How the voltage sensor moves and how tightly it interacts with these two gates on its way to adopt a relaxed conformation when the membrane is depolarized may critically determine the mode of Kv channel inactivation. In certain Kv channels, voltage sensor movement leads to a tight interaction with the P-gate, which may cause conformational changes that render the selectivity filter non-conductive (“P/C-type inactivation”). Other Kv channels may preferably undergo inactivation from pre-open closed-states during voltage sensor movement, because the voltage sensor temporarily uncouples from the A-gate. For this behavior, known as “preferential” closed-state inactivation, we introduce the term “A/C-type inactivation”. Mechanistically, P/C- and A/C-type inactivation represent two forms of “voltage sensor inactivation.

    Gene silencing and a novel monoallelic expression pattern in distinct CD177 neutrophil subsets

    Get PDF
    CD177 presents antigens in allo- and autoimmune diseases on the neutrophil surface. Individuals can be either CD177-deficient or harbor distinct CD177(neg) and CD177(pos) neutrophil subsets. We studied mechanisms controlling subset-restricted CD177 expression in bimodal individuals. CD177(pos), but not CD177(neg) neutrophils, produced CD177 protein and mRNA. Haplotype analysis indicated a unique monoallelic CD177 expression pattern, where the offspring stably transcribed either the maternal or paternal allele. Hematopoietic stem cells expressed both CD177 alleles and silenced one copy during neutrophil differentiation. ChIP and reporter assays in HeLa cells with monoallelic CD177 expression showed that methylation reduced reporter activity, whereas demethylation caused biallelic CD177 expression. HeLa cell transfection with c-Jun and c-Fos increased CD177 mRNA. Importantly, CD177(pos) human neutrophils, but not CD177(neg) neutrophils, showed a euchromatic CD177 promoter, unmethylated CpGs, and c-Jun and c-Fos binding. We describe epigenetic mechanisms explaining the two distinct CD177 neutrophil subsets and a novel monoallelic CD177 expression pattern that does not follow classical random monoallelic expression or imprinting

    Dynamic Coupling of Voltage Sensor and Gate Involved in Closed-State Inactivation of Kv4.2 Channels

    Get PDF
    Voltage-gated potassium channels related to the Shal gene of Drosophila (Kv4 channels) mediate a subthreshold-activating current (ISA) that controls dendritic excitation and the backpropagation of action potentials in neurons. Kv4 channels also exhibit a prominent low voltage–induced closed-state inactivation, but the underlying molecular mechanism is poorly understood. Here, we examined a structural model in which dynamic coupling between the voltage sensors and the cytoplasmic gate underlies inactivation in Kv4.2 channels. We performed an alanine-scanning mutagenesis in the S4-S5 linker, the initial part of S5, and the distal part of S6 and functionally characterized the mutants under two-electrode voltage clamp in Xenopus oocytes. In a large fraction of the mutants (>80%) normal channel function was preserved, but the mutations influenced the likelihood of the channel to enter the closed-inactivated state. Depending on the site of mutation, low-voltage inactivation kinetics were slowed or accelerated, and the voltage dependence of steady-state inactivation was shifted positive or negative. Still, in some mutants these inactivation parameters remained unaffected. Double mutant cycle analysis based on kinetic and steady-state parameters of low-voltage inactivation revealed that residues known to be critical for voltage-dependent gate opening, including Glu 323 and Val 404, are also critical for Kv4.2 closed-state inactivation. Selective redox modulation of corresponding double-cysteine mutants supported the idea that these residues are involved in a dynamic coupling, which mediates both transient activation and closed-state inactivation in Kv4.2 channels

    Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry

    Get PDF
    Tetrathiafulvalene (TTF) has been extensively explored as a π-electron donor in supramolecular systems. Over the last two decades substantial advances have been made in terms of constructing elaborate architectures based on TTF and in exploiting the resulting systems in the context of supramolecular host–guest recognition. The inherent electron-donating character of TTF derivatives has led to their use in the construction of highly efficient optoelectronic materials, optical sensors, and electron-transfer ensembles. TTFs are also promising candidates for the development of the so-called “functional materials” that might see use in a range of modern technological applications. Novel synthetic strategies, coupled with the versatility inherent within the TTF moiety, are now allowing the architecture of TTF-based systems to be tuned precisely and modified for use in specific purposes. In this critical review, we provide a “state-of-the-art” overview of research involving TTF-based macrocyclic systems with a focus on their use in supramolecular host–guest recognition, as components in non-covalent electron transfer systems, and in the construction of “molecular machines”

    Quality Prediction in Directed Energy Deposition Using Artificial Neural Networks Based on Process Signals

    Get PDF
    The Directed Energy Deposition process is used in a wide range of applications including the repair, coating or modification of existing structures and the additive manufacturing of individual parts. As the process is frequently applied in the aerospace industry, the requirements for quality assurance are extremely high. Therefore, more and more sensor systems are being implemented for process monitoring. To evaluate the generated data, suitable methods must be developed. A solution, in this context, was the application of artificial neural networks (ANNs). This article demonstrates how measurement data can be used as input data for ANNs. The measurement data were generated using a pyrometer, an emission spectrometer, a camera (Charge-Coupled Device) and a laser scanner. First, a concept for the extraction of relevant features from dynamic measurement data series was presented. The developed method was then applied to generate a data set for the quality prediction of various geometries, including weld beads, coatings and cubes. The results were compared to ANNs trained with process parameters such as laser power, scan speed and powder mass flow. It was shown that the use of measurement data provides additional value. Neural networks trained with measurement data achieve significantly higher prediction accuracy, especially for more complex geometries

    Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.

    Get PDF
    A-type voltage-gated K(+) (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na(+) channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity
    • 

    corecore