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Summary 

Long non-coding RNA (lncRNAs) interact with the nuclear architecture and are 

involved in fundamental biological mechanisms, such as imprinting, histone-code regulation, 

gene activation, gene repression, lineage determination, and cell proliferation, all by regulating 

gene expression. Understanding lncRNAs regulation of transcriptional or posttranscriptional 

gene regulation expands our knowledge of disease. Several associations between altered 

lncRNAs function and gene expression have been linked to clinical disease phenotypes. Early 

advances have been made in developing lncRNAs as biomarkers. Several mouse models reveal 

that human lncRNAs have very diverse functions. Their involvement in gene and genome 

regulation as well as disease underscores the importance of lncRNA-mediated regulatory 

networks. Because of their tissue-specific expression potential, their function as activators or 

repressors, and their selective targeting of genes, lncRNAs are of potential therapeutic interest. 

We review the regulatory mechanisms of lncRNAs, their major functional principles, and 

discuss their role in Mendelian disorders, cancer, cardiovascular disease, and neurological 

disorders. 
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Gene regulation  

 The principle of gene expression is based on epigenetic, transcriptional, and post-

transcriptional regulation. Conrad Hal Waddington coined the term ‘epigenotype or 

epigenetics’ to summarize the complex developmental processes existing between phenotype 

and genotype in 1942 [1]. Today, we define epigenetics as the study of heritable changes in 

gene activity, which are not caused by changes in the DNA sequence. The genomic architecture 

and intra- or inter-chromosomal communication are key mechanisms for accurate gene 

regulation [2]. Post-transcriptional processes such as alternative splicing, RNA-editing, and 

microRNA-mediated regulation are reviewed elsewhere [3, 4].  

 Genomic regulators localized on one chromosome that act on the same chromosome are 

termed cis-regulatory elements. Elements regulating in-trans are interchromosomal regulators 

that communicate, either between homologous or non-homologous chromosomes. Enhancer 

elements activate gene expression, in contrast to silencers that suppress expression. Insulators 

determine barriers between different chromatin states (Fig. 1 a) and affect expression 

secondarily [5]. The gene-regulatory elements can exhibit high conservation; however, tissue-

specific expression can differ greatly between species [6, 7]. The distance between the down- 

or upstream-located regulator and the target gene ranges several kilobases to 1.5 megabases 

(Mb) [8]. Functional protein complexes, namely transcription factors (TF) and co-activators, 

bind with chromatin modifying proteins at DNA consensus motifs. These motif complexes 

influence the gene expression. The nucleosome state is changed through ATP-dependent 

remodeling complexes of the SWitch/Sucrose NonFermentable (SWI/SNF) families (first 

found in yeast) or through histone modifiers, such as histone acetyl or methyl transferases [9, 

10]. The tissue-specific expression is based on the chromatin state and the bound TF. Histones, 

the nucleoproteins around which the DNA is wrapped, and histone marks characterize the 

chromatin state. More than 60 different reversible and irreversible histone modifications are 
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known. They vary between tissues and species and determine the transcriptional active 

euchromatin or inactive heterochromatin states [11]. The histone modifications, especially 

during chromatin looping1, determine quantitatively the gene regulation.  

 Gene-regulatory elements (Fig. 1 b) are then in physical proximity to gene promoters to 

drive transcription [12]. Methylated alleles or gene clusters of either the maternal or paternal 

alleles in genomic imprinting processes and during X-inactivation to compensate gene dosage, 

become manifested in early embryogenesis [13]. The selection of activating or repressing 

histone marks was found to be operated by a sequential and combinatorial epigenetic code or 

language depending on the histone modifications involved, the DNA-binding proteins, and non-

coding RNAs (ncRNAs), thereby assuring tissue-specific gene expression and epigenetic 

modifications [14, 15]. The combinatorial diversity is also due to the variety of functional gene-

regulators, gene promoters, gene homologs or pseudo-genes, and embryonic and tissue-specific 

developmental stages. Inherited, framework or environmental epigenetic conditions determine 

systemically each functional element supporting proper gene regulation. Alterations of the 

complex interactions are often clinically apparent in numeric or structural aberrant karyotypes 

[16]. The physical dissociation of regulator and gene can cause positional effects leading to 

differentially expressed genes [17].  

 

 

  

                                                           
1  Studying the structural properties and spatial organization of chromosomes is important for 

the understanding and evaluation of the regulation of gene expression, DNA replication and 

repair, and recombination. One example of chromosomal interaction is chromosome looping in 

which a chromosomal region can fold in order to bring an enhancer and associated TF within 

close proximity to a gene. 
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lncRNAs influence gene and genome regulation  

 The Encyclopedia of DNA elements (ENCODE) consortium was founded in 2003 to 

characterize and annotate functional genomic elements of the human genome and of several 

transcriptomes. ENCODE determined that protein-coding genes are not the only major units of 

the genome that is nearly fully transcribed. Only <3% of the transcripts originate from protein-

coding genes [18]. MicroRNAs (miRNAs), small interfering RNAs (siRNAs), and PIWI-

interacting2 RNAs (piRNAs), describe the class of short ncRNAs. In contrast, lncRNAs have 

more than 200 nucleotides, are intra- or intergenic, with or without a poly-A signal, oftentimes 

exhibit low expression levels, and can be highly tissue-specifically expressed and conserved 

[19, 20]. Linear ncRNAs and circular RNAs (circRNAs) have no protein-coding potential and 

can exist as mono- or multi-exonic sense and antisense transcripts [21, 22]. The circRNAs are 

post-transcriptional regulators that are formed by head-to-tail splicing. The first detailed 

investigation of the circular cerebellar degeneration-related protein 1 transcript (CDR1as) 

determined antagonistic actions on miRNA [22]. Chromatin immunoprecipitation with 

massively parallel DNA sequencing (ChIP-seq) experiments revealed that H3K4me1, 

H3K36me3, H3K27ac, and p300 characterize gene-activating enhancers and also lncRNAs loci 

[20, 23]. RNA sequencing (RNA-seq) of 24 human tissues identified more than 8000 lncRNAs 

that are typically co-expressed with their neighboring genes [19]. lncRNAs are tools for the 

gene and genome regulation within the nucleus [24]. Key roles of lncRNAs have been attributed 

to the biological processes, chromatin remodeling [25], X-chromosome inactivation [26], 

embryonic stem cell pluripotency [27], embryogenesis and development [28], as well as 

imprinting of genomic loci [13].  

                                                           
2 The piwi or PIWI, originally P-element induced wimpy testis in Drosophila, class of genes 

was originally identified as encoding regulatory proteins responsible for maintaining 

incomplete differentiation in stem cells. PIWI proteins are highly conserved nucleic acid 

binding proteins. 
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 Since 1991, the X-inactive specific transcript (Xist) has been investigated to gain insight 

into the mechanisms of X-chromosomal inactivation (XCI) [26]. In 2013, Xist was shown to 

exploit the three-dimensional structure of the X chromosome to spread from its transcription 

site to loci with high gene density and transcription that are in physical nuclear proximity. After 

the recruitment of the chromatin modifying polycomb group (PcG) proteins, Xist pulls up 

further in cis localized X-chromosomal regions to pursue inactivation through the formation of 

a transcriptionally silent H3K27me3 nuclear compartment and spreads dependent on its internal 

A-repeat domain across the entire X chromosome [29]. Another project explored the spreading 

mechanism of Xist on the 150 Mb of the X chromosome [30]. Simon and colleagues described 

a two-step inactivation mechanism. During the XCI establishment in early embryonic cells, Xist 

targets gene-rich domains before spreading to intervening gene-poor domains. The mechanism 

seem to persist as epigenetic memory for a facilitated and more efficient XCI during somatic 

proliferation and maintenance [30]. The active counterpart of Xist is Tsix, a gene that functions 

as an antisense to Xist to support the active X chromosome. Furthermore, the additional 

antagonistic relationship of Xist to Jpx, a lncRNA Xist activator, demonstrates that lncRNA-

antisense transcripts regulate lncRNA [31, 32]. Also in 2013, Sun and colleagues showed that 

the lncRNA, Jpx, displaces the chromatin remodeling and RNA-binding protein, CTCF3, from 

one X chromosome to regulate the Xist expression in a titration-dependent antagonistic 

mechanism. Prior to XCI, CTCF normally inhibits the Xist expression. However, in the absence 

of CTCF, Jpx activates the Xist promoter [33]. In summary, these results broaden the classic 

understanding of how genes or chromosomes are regulated. The process of chromatin looping 

to establish gene expression functions inter alia through the actions of lncRNA and their 

associated proteins.  

                                                           
3 Transcriptional repressor CTCF, also known as 11-zinc finger protein or CCCTC-binding 

factor, is a transcription factor that is involved in many cellular processes, including 

transcriptional regulation, insulator activity, and regulation of chromatin architecture. 
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A second well-studied epigenetically acting lncRNA is the HOX antisense intergenic 

RNA (HOTAIR). HOTAIR is transcribed from the HOXC gene cluster on chromosome 12 and 

acts in a repressing manner on 40 kilobases of the HOXD cluster on chromosome 2 in trans 

through H3K27 trimethylation [34]. The lncRNA, Air and KCNQ1OT1, are both localized on 

imprinted paternal alleles. They recruit the Polycomb Repressive Complex 2 (PRC2) and a 

histone methylase mediating the enrichment of the histone modification H3K9me3 to silence 

the genes KCNQ1 and IGFR2 [35, 36]. In contrast to lncRNA silencing genes, several activating 

lncRNAs have been described that promote gene expression of in cis target loci with protein-

coding genes [37]. HOXA transcript at the distal tip (HOTTIP) directly interacts in cis with the 

WDR5/MLL complex ending up in the activation of gene transcription from the HOXA gene 

cluster through enrichment of the euchromatin characteristic H3K4me3 flag [38]. The cis- and 

trans-chromosomal interaction lncRNA (CISTR-ACT) is a chondrogenic regulator that interacts 

in cis and in trans with essential developmental genes determining the cartilage. The CISTR-

ACT lncRNA is transcribed from an enhancer that loops to a 24.4 Mb distant chromosome 12 

position to induce PTHLH expression. In addition, CISTR-ACT pinpoints SOX9 on the non-

homologous chromosome 17 in trans [39]. The knowledge about HOTAIR and CISTR-ACT 

extend the gene-regulatory background regarding in cis interactions. In in trans 

communications of homologous or non-homologous chromosomes, the nuclear architecture is 

a major participating element.  

As far back as 1904, Theodor Boveri coined the term of chromosomal territories [40]. 

Chromosomes are not randomly distributed within the nucleus, although mitotic conformational 

changes occur [41]. Transcriptional active euchromatin is predominantly located in the nuclear 

center; the compact heterochromatin resides in the outer nucleus. The positioning of 

chromosomes and their interaction is not predetermined, but rather is a result of a stochastically 

calculated process, including chromosome looping [42]. In the molecular genetic high-
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throughput techniques, a modification of chromosome conformation capture (3C) termed Hi-C 

and Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) are methods 

that allow proximal chromosomal contacts to be identified. The experimental analysis 

determined the spatial proximity of gene-rich regions and chromosomes and showed the 

segregation of euchromatin and heterochromatin genomic areas [43, 44]. The topological 

nuclear domains can determine tissue-specific gene regulation through different sizes and 

attributes.  

Some lncRNAs have been intensively investigated during the last two decades (Table 

1). The data yielded insight into the highly organized structure of the nucleus. The complex 

interplay between chromosome territories, chromatin state and lncRNAs affects the tissue-

specific gene regulation to control developmental stages or to maintain tissue perpetuation [41]. 

The lncRNAs can reflect nuclear addresses acting in a local, locus-specific or allele-specific 

manner for the control of gene expression, genome organization or regulation. The initial 

lncRNAs transcription signals in cis or in trans and recruits chromatin modifying complexes or 

basic factors of the transcription machinery. Moreover, the lncRNAs transcription can be 

involved in the formation of topological nuclear domains, thereby working secondarily on gene 

regulation [45]. The described lncRNAs-mediated regulation scenarios are maintained from 

different classes of lcnRNAs that belong to the families of competing endogenous lncRNAs 

(ceRNAs), activating or enhancer-like lncRNAs, Natural Antisense Transcript lncRNAs (NAT) 

and small nucleolar RNAs (snoRNAs, Table 1). Table 1 lists lncRNAs with defined biological 

functions or with a proven association with human diseases.  

 

Functional insights in lncRNA-mediated gene regulation 

 We are merely at the beginning in our understanding of the functional processes and the 

biological width of lncRNA-mediated gene regulation. One controversial question is how 
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lncRNAs can specifically regulate its target genes. Do scaffolds between lncRNAs and 

mediating protein complexes exist to guarantee the in cis and in trans regulations? Are triple-

helices of lncRNAs:DNA:DNA formed or do lncRNAs bind transcription factors and mediate 

gene expression themselves? During chromatin looping, are lncRNAs dropped from their 

transcription site for a specific and direct lncRNAs:DNA binding at regulatory sites within a 

coding gene locus? Do lncRNAs bind the mRNA transcript for post-transcriptional 

modifications?  

 The features of lncRNAs for biologically relevant regulatory processes are their keys to 

success. Several lncRNAs function as decoys to trap regulatory proteins. DNA-damage 

mediated the induction of the lncRNA PANDA that interacted with the transcription factor NF-

YA, to prevent apoptosis by titrating the NF-YA away from target genes. The expression 

control of pro-apoptotic genes can be a general feature of genes that drive mitosis and which 

promoters harbor lncRNAs [46], (Fig. 2 a). LncRNAs can provide the service as scaffolding 

adaptors to bind protein complexes for further gene targeting (Fig. 2 b). The lncRNA, TERC, 

serves as scaffold to transport the telomerase complex [47]. Promoter-associated RNA (pRNA) 

associate with the chromatin remodeling complex NoRC/TIP5 to induce transcriptional 

silencing through DNA methylation of rRNA genes [48]. The DNA methylase, DNMT3b, then 

recognizes the triple-helix of lncRNA at the DNA binding site for the transcription factor TTF-

1 [49]. For HOTTIP, Wang et al showed that chromosomal looping with spatial proximity 

within the HOXA gene cluster is necessary to drive transcription of several 5’ HOXA genes 

through direct binding of the co-activating HOTTIP lncRNA with the adaptor protein WDR5 

[38]. Some lncRNAs seem to translate higher spatial chromosome structures and processes such 

as looping into defined chromatin modifications and domains to control gene expression. The 

same mechanism could be subject to CISTR-ACT and other enhancer-encoded lncRNAs [39, 

37], (Fig. 2 c). The physical proximity in chromatin loops enables the transformation of higher 
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order genome conformation into biochemical histone modifications and transcription factor 

recruitment. The lincRNA-p21, HOTAIR, XIST, AIR and other lncRNAs can bind RNA-binding 

or chromatin-remodeling proteins to support guiding functions to conduct further remodeling 

complexes or co-activators or repressors to specific genomic loci [50, 51], (Table 1, Fig. 2 d). 

Xist can stack the transcription factor YY1 that is capable to bind RNA and DNA, thereby 

attaching Xist to the X chromosome. They form the nucleation center together with PRC2 and 

squelch gene expression by competing with the transcription machinery [52].  

 

LncRNAs in development and disease 

 In addition to epigenetic functions during X-chromosome inactivation, imprinting and 

co-activation or repression of genes, lncRNAs have been attributed to various functions in 

cellular homeostasis, during development and in pathogenesis of diseases. The half-STAU1-

binding site RNA (½-sbsRNA) co-activate the STAU1-mediated mRNA decay by dsRNA 

formation to regulate the degradation of translationally active mRNAs [53]. The terminal 

differentiation-induced lncRNA (TINCR) regulates the somatic tissue differentiation through 

binding to differentiation-mediating mRNAs for proper translation [54].  TINCR directly binds 

to the STAU1 protein, thereby stabilizing differentiating mRNAs. Braveheart (Bvht) was 

identified as lncRNA responsible for the establishment of the cardiovascular lineage 

determination and the maintenance of the cadiac fate [55]. Bvht conducts its functions through 

interaction with SUZ12, an important subunit of PRC2. EGO (eosinophil granule ontogeny) 

plays a role during eosinophil development [56]. Fendrr is a lateral mesoderm-specific lncRNA 

controlling mesodermal differentiation and its developing derivatives heart and body wall 

through binding to the histone-remodeling complexes PRC2 and TrxG/MLL [57]. Fendrr-

lacking embryos showed dysregulation of mesoderm-specific transcription factors and 

reduction of PRC2 enrichment at their loci. Gomafu is involved in neuronal and retinal 
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development. Its down regulation, the binding of splicing factors and the resulting altered 

splicing patterns was associated with schizophrenia [58]. The muscle-specific lncRNA linc-

MD1 is a competing endogenous RNA (ceRNA) that controls muscle differentiation via 

sponging of miRNA. Moreover, linc-MD1 seem to be involved in the pathogenesis of Duchenne 

muscle dystrophy [59]. The lncRNA, FMR4, triggers the ratio of proliferation and apoptosis 

and was silenced in patients with the fragile X-syndrome [60]. CISTR-ACT was dysregulated 

due to chromosomal translocations in two different families with the autosomal-dominant 

Mendelian disorder of the chondrodysplasia brachydactyly type E (BDE). Chromosome 12 

translocations physically disrupted CISTR-ACT from the major chondrogenic morphogene, 

PTHLH, and caused dysregulation of the coding gene and lncRNA [39]. These data underscore 

the important interface between genome conformation and gene-lncRNA-regulation. The 

suppression of UBE3A-ATS can activate UBE3A in patients with the neurogenetic disorder of 

the Angelman’s syndrome [61, 62]. The severe phenotypes of leukemia, myelofibrosis, 

sarcoma, and vasculitis were detected in Xist-depleted mice and suggest Xist-mediated in vivo 

cancer repression. The loss of Xist seemed to reactivate the X chromosome leading finally 

through aberrant hematopoietic stem cells to cancer [63]. The metastasis-associated lung 

adenocarcinoma transcript 1 (MALAT1) that is very abundantly expressed, co-localizes with 

splicing factors in the nuclear speckles and regulates alternative splicing of pre-mRNAs [64]. 

Its association with migration, metastasis and tumor growth in lung adenocarcinoma has been 

shown [65, 66]. MALAT1 is required for mitotic proliferation and seems to mediate its activity 

positively through activated p53 and B-MYB, an oncogenic transcription factor. Thus, the 

dysregulation of splicing factors and alternative splicing led to the dysregulation of cell-cycle-

regulated transcription factors promoting cellular proliferation [66]. For the non-

polyadenylated MALAT1, a 3’ triple helix formation was found that served as translational 

enhancer, and was inhibited by miRNAs, and argued for major role in regulation and 

stabilization of MALAT1 [67]. HOTAIR was proposed as diagnostic marker in breast and 
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colorectal cancer. Its depletion resulted in reduced invasiveness and its expression level 

correlated with differentially regulated genes of the PRC2 complex [68, 25]. Currently, 

upregulated HOTTIP and HOXA13 expression were associated with prognosis and progression 

of the hepatocellular carcinoma (HCC), [69]. The highly up-regulated in liver cancer lncRNA 

HULC was found in blood of HCC patients, promising a potential biomarker [70]. HULC 

sponges several miRNA such as miR-372, leading to transcriptional inhibition of target genes, 

i.e. the transcription factor CREB. The CREB motif within the HULC promoter supports 

CREB-mediated upregulation in liver cancer through an auto-regulatory mechanism blocking 

the miR-372 function [71]. Moreover, HULC correlated with upregulated hepatitis B virus X 

protein (HBx) that importantly contributes to HCC and that was able to promote HULC 

expression. The HULC-mediated downregulation of the tumor suppressor p18 supported the 

HCC proliferation [72]. The expression of BACE1 antisense transcript (BACE1-AS) was linked 

to increased amyloid-β 1-42 in patients with Alzheimer’s disease and gave rise for a stabilizing 

function of the lncRNA [73]. Aberrant ANRIL transcripts and mutations were associated with 

cardiovascular disease and cancer [74, 75]. The existence of linear and circular ANRIL 

transcripts was found in patients with artherosclerosis [74]. The prostate cancer-associated 

ncRNA transcript 1 lncRNA PCAT-1 [76, 77], SchlAP1 (second chromosome locus associated 

with prostate-1) [78] and CTBP1-AS [79], indicate cancer cell invasiveness and metastasis in 

prostate cancer progression. SchlAP1 antagonizes the tumor-suppressing functions of the 

SWI/SNF chromatin-remodeling complex [80, 78], and CTBP1-AS represses CTBP by 

interacting with histone deacetylases and the transcriptional repressor PSF, but also by 

inhibiting tumor-suppressor genes in a general manner [79].  
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Current research directions 

 The idea that lncRNAs are nuclear addresses or addressors, respectively plays a major 

role in gene and genome regulation. The regulation of the regulators is not clear. The lncRNA 

also need to be directed. One hypothesis is that the interplay between the marginally expressed 

lncRNAs, tissue-specific TF, and histone modifications ensure tissue-specific gene expression. 

In which extent is stochastical coincidence present? In the human genome, 46 chromosomes 

containing ~3x109 basepairs communicate while underlying dramatic conformational changes 

during mitosis. However, the cellular and nuclear infrastructures remain to fulfill the 

particularized cellular tasks.  

 The lncRNAs are often highly tissue-specific. Despite the barely understood 

mechanisms of their specific target-gene regulation, lncRNAs have a potential therapeutic 

value. To date, most of the therapeutic agents serve an inhibitory function. Blocking lncRNAs 

could lead to the upregulation of genes and have a stimulatory effect. The subclass of Natural 

Antisense Transcripts (NAT), shown in Table 1, can be degraded or inhibited in binding their 

target mRNA through single-stranded antagonistic oligo-nucleotides (antagoNATs), [81]. The 

endogenous de-repression of genes could be the key in various haplo-insufficiencies. Moreover, 

upregulated lncRNAs in cancer that normally exhibit decoy functions could be also targets for 

antagoNATs [81]. Previously, antisense oligo-nucleotides (ASOs) were successfully applied to 

silence the RNA gain-of-function effect in the hereditary degenerative disease myotonic 

dystrophy type 1 (DM1) and a performed myogenic long-term Malat1 knockdown was effective 

[82]. Currently, siRNAs are being introduced therapeutically in patients. 

Detailed systems-biological approaches are needed to locate, to annotate and to 

characterize lncRNAs in development and disease. Various genetic model systems have to be 

established to understand the functional roles of lncRNAs:protein interactions that modulate 

chromatin remodeling complexes, gene and genome regulation to investigate lncRNA-
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associated pathogenesis of disease or developmental defects. In two different projects 

generating Malat1 knockout mice, any apparent phenotype or alteration of the murine 

development was observed [83, 84]. Only in cis genes of Malat1 were differentially expressed 

[84]. The lncRNA NEAT1 is highly expressed in the mammal-specific nuclear paraspeckles4. 

Interestingly, the NEAT1-depleted mice had no phenotypes, suggesting environmentally 

provoked nuclear structures [85]. In Malat1-depleted mice, showing no phenotype again, Neat1 

was downregulated in several tissues lacking Malat1, indicating its dispensability in mice 

paraspeckles [86]. These data indicate that human-specific lncRNAs may exist that do not exert 

their human functions in animal models. In contrast, a Hotair-deletion in mouse was associated 

with malformation of spine and metacarpals and a general, non-selective derepression of genes 

[87]. In the latest study of 18 knockout models for approved lncRNAs, only 5 displayed 

apparent phenotypes [88]. The results indicate that long-term and more precise phenotypization 

could reveal additional subtle and highly tissue-specific behavioral phenotypes.  The lncRNAs 

that have been associated with clinically apparent phenotypes are only the tip of the iceberg. 

The detailed molecular analysis of lncRNAs will augment the understanding of the nuclear 

regulation networks and discover more pathogenic lncRNAs or circRNAs that can serve as 

clinically relevant prognostic or diagnostic biomarker or as therapeutic targets. 
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Table 1. Biological functions and associations of lncRNAs in Mendelian diseases, cancers, 

cardiovascular and neurological diseases. NAT = natural antisense transcript. 

 

Development, cellular maintenance and imprinting 

 

½-sbsRNA mRNA degradation; transactivation of STAU1 for mRNA binding  [53] 

Air chromatin remodeling; mono-allelic expression; imprinting and silencing of 

gene loci in cis in murine placenta 

[35] 

Braveheart determination of the cardial lineage in mouse [55] 

EGO regulation of eosinophil differentiation [56] 

Fendrr expression in the murine lateral mesoderm; heart and body wall development [57] 

Gomafu CNS neurons; neuronal stem cell development; Schizophrenia  [58] 

HOTAIRM1 myelopoesis; modulation of the expression of the HOXA cluster  [89] 

Jpx X-inactivation; activation of XIST, probably through interference with Tsix [33] 

LincRNA-EPS repression of the erythroid differentiation and stimulation of apoptosis  [90] 

Linc-MD1 competing endogenous lncRNA (ceRNA); control of myelopoesis, decoy for 

miR-133 and miR-135 

[59] 

pRNA RNA-dependent DNA-methylation and triplex-formation [49] 

utNgn1 enhancer-encoded lncRNA; transcriptional regulation of Neurog1 [91] 

TINCR control of somatic tissue differentiation [54] 

Tsix repression of Xist through transcriptional interference [31, 92] 

Xite co-activator of the Tsix expression [93] 
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Mendelian diseases 

 

CISTR-ACT enhancer-encoded lncRNA; chromatin-remodeling; transcriptional co-

activation and repression of chondrogenesis genes; upregulation in 

translocations of chromosome 12, associated with brachydactyly type E  

[39] 

FMR4 anti-apoptotic function; fragile-X-syndrome [60] 

HELLPAR activation of cellcycle genes; HELLP-syndrome [94] 

PRINS protective functions for stressed cells in psoriasis [95] 

UBE3A-ATS imprinting of UBE3A; Angelman syndrome [61, 62] 

 

Cancer 

 

ANRASSF1 transcriptional co-repressor of the tumor suppressor RASSF1A; enhancement of 

the cell proliferation 

[96] 

ANRIL/p15AS chromatin remodeling; PCR1-mediated repression of the tumor suppressor 

INK4A-ARF-INK4b; cardio-vascular diseases; upregulation in prostate 

carcinoma; leukemia; mutations are known 

[74, 97, 

98, 75, 

99, 100] 

CTBP1-AS transcriptional repression of CTBP1; stimulation of proliferation; Prostate 

carcinoma 

[79] 

H19 transcriptional repression; imprinting; expression stimulates proliferation; 

upregulation in stomac cancers, miRNA regulation  

[101-104] 

HOTAIR chromatin remodeling; transcription at the HOXC gene cluster and repression 

of the HOXD cluster; upregulation in breast and colon cancers; promotion of 

metastasis 

[68, 25, 

87, 34, 

105] 

HOTTIP chromatin remodeling; transcriptional co-activation of the HOXA gene cluster; 

potentially involved in leukemias and hepatocellular carcinoma 

[69, 38] 

HULC post-transcriptional modification; upregulation in hepatocellular carcinoma [106, 70] 
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LincRNA-p21 transcriptional co-activation; p53 regulation after DNA damage; NAT; 

upregulation in tumor cell lines 

[50, 51] 

KNCQ1OT1 chromatin remodeling; loss of imprinting in colorectal carcinoma [107, 

108] 

MALAT1 post-transcriptional modification; control of alternative splicing; upregulation 

in tumor tissues; also known as NEAT2 

[109, 65, 

64, 66, 

110] 

PCA3 control of prostate carcinoma cells; modulation of androgen receptor signals [111] 

PCAT-1 stimulation of proliferation; prostate and colorectal carcinoma; biomarker [76, 77] 

PTENP1 pseudo-gene, that regulates the tumor suppressor PTEN through competitive 

miRNA binding; complete loss in several cancers 

[112] 

SChLAP1 promotes invasiveness and metastasis of prostate cancers [78] 

SRA transkriptional co-activator of steroid receptors; upregulated during breast 

cancerogenesis  

[113, 

114] 

TERRA protein inhibition (telomerase); promotion of telomeric hetero-chromatin 

formation; repressed in tumor cell lines 

[115] 

Xist chromatin remodeling; X-inactivation; blocked in breast, ovarian and cervix 

cancer cell lines; Leukemia 

[26, 63] 

 

Cardiovascular diseases 

 

Alc1-as / cTNI-

as 

co-repressor; NAT; post-transcriptional regulation; involved in Tetralogy of 

Fallot, ischemia, Heart insufficiency 

[116] 

MIAT / RNCR2 retina development; Myocard infarction  [117, 

118] 

Myh7-as co-repressor; NAT; regulation of the expression ratio of the sarcomeric 

components Myh6 and Myh7  

[119] 

 

Neurological diseases 
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BACE1-AS regulation of the mRNA stability and transcriptional co-activation of BACE1; 

NAT; upregulation in Alzheimer’s disease  

[73] 

DISC2 transcriptional regulation of DISC1; NAT; Schizophrenia [120] 

PINK1-AS insulin signaling PTEN, Diabetes [121] 

SCA8 transcriptional repression of KLHL1; Spinocerebellar ataxia [122] 

 

Figures. 

 

Fig. 1. a Scheme of gene-regulatory elements influencing gene expression. Enhancer, silencer 

and insulator elements can be localized up to 1.5 Mb upstream or downstream of the 

transcription start site. Response elements within gene promoters bind transcription factors and 

co-activators to maintain a tissue-specific gene expression. The regulation is dependent on the 

histone modifications. b Chromatin-looping between a cis-regulatory element (CRE) and its 

target gene promoter. Recruited modifying, mediating, activating or repressing proteins build 

the transcription factor – co-activator - complex (TFCC) and interact in physical proximity with 

the promoter to regulate gene expression.  
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Fig. 2. a lncRNA can serve as decoys to control the actions of DNA-binding proteins, i.e. 

PANDA. b Scaffold structures of lncRNA with protein partners display functional units for gene 

regulation, TERC. c Enhancer-encoded lncRNA act specifically on their target genes through 

chromatin loops, i.e. CISTR-ACT and HOTTIP. d Either DNA-bound adaptor-proteins bind 

lncRNA or DNA-bound lncRNA serve as guides for further functional processes, i.e. Xist or 

HOTAIR. Triple-helix formations of lncRNA with the DNA double helix are possible. 
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