6 research outputs found

    Impact of physio-chemical spinning conditions on the mechanical properties of biomimetic spider silk fibers

    Get PDF
    Artificial spider silk has emerged as a biobased fiber that could replace some petroleum-based materials that are on the market today. Recent progress made it possible to produce the recombinant spider silk protein NT2RepCT at levels that would make the commercialization of fibers spun from this protein economically feasible. However, for most applications, the mechanical properties of the artificial silk fibers need to be improved. This could potentially be achieved by redesigning the spidroin, and/or by changing spinning conditions. Here, we show that several spinning parameters have a significant impact on the fibers’ mechanical properties by tensile testing more than 1000 fibers produced under 92 different conditions. The most important factors that contribute to increasing the tensile strength are fast reeling speeds and/or employing post-spin stretching. Stretching in combination with optimized spinning conditions results in fibers with a strength of >250 MPa, which is the highest reported value for fibers spun using natively folded recombinant spidroins that polymerize in response to shear forces and lowered pH

    Tyrosine residues mediate supercontraction in biomimetic spider silk

    Get PDF
    Water and humidity severely affect the material properties of spider major ampullate silk, causing the fiber to become plasticized, contract, swell and undergo torsion. Several amino acid residue types have been proposed to be involved in this process, but the complex composition of the native fiber complicates detailed investigations. Here, we observe supercontraction in biomimetically produced artificial spider silk fibers composed of defined proteins. We found experimental evidence that proline is not the sole residue responsible for supercontraction and that tyrosine residues in the amorphous regions of the silk fiber play an important role. Furthermore, we show that the response of artificial silk fibers to humidity can be tuned, which is important for the development of materials for applications in wet environments, eg producing water resistant fibers with maximal strain at break and toughness modulus

    Cardiovascular Activity

    No full text
    corecore