450 research outputs found

    Pro- és antioxidáns hatások szerepe az endoplazmás retikulum eredetű stresszben és apoptózisban = Pro- and antioxidant effects in endoplasmic reticulum stress and apoptosis

    Get PDF
    Az endoplazmás retikulum számos környezeti és metabolikus hatás szenzora. A jelátvitel gyakran a luminális redoxon keresztül valósul meg. Munkánk során azonosítottuk a hexóz-6-foszfát dehidrogenázt, mint a luminális piridin nukleotidok redox státuszának meghatározóját több sejttípusban. A luminális redox fontos a tápláltság érzékelésében, valamint a sejt apotózis/autofágia szabályozásában. A luminális redoxot befolyásoló antioxidánsok, hepatotoxinok, hormonanalógok és más környezeti hatások alapvetően befolyásolhatják a sejt életképességét. A nemzetközi együttműködés keretében elsősorban a hexóz-6-foszfát dehidrogenázt tanulmányoztuk mint szenzort és mint a luminális redox meghatározóját. | The endoplasmic reticulum is an important sensor and integrator of environmental and metabolic stimuli. The signaling often involves the changes in luminal redox. We have identified the hexose-6-phosphate dehydrogenase as the main determinant of the redox state of luminal pyridine nucleotides in several cell types. Luminal redox is important in nutrient sensing, and in the regulation of programmed cell death. Antioxidants, hepatotoxins, endocrine disruptors and other environmental agents affecting luminal redox can profoundly alter the viability of the cell. In the frame of the international cooperation hexose-6-phosphate dehydrogenase was studied as a nutrient sensor and as the main regulator of luminal redox

    BERECHNUNG RECHTWINKLIGER ABSTECKUNGSNETZE

    Get PDF

    Depletion of luminal pyridine nucleotides in the endoplasmic reticulum activates autophagy with the involvement of mTOR pathway

    Get PDF
    It has been recently shown that redox imbalance of luminal pyridine nucleotides in the endoplasmic reticulum (ER) together with oxidative stress results in the activation of autophagy. In the present study we demonstrated that decrease of luminal NADPH/NADP+ ratio alone by metyrapone was sufficient to promote the mechanism of "self-eating" detected by the activation of LC3. Depletion of luminal NADPH had also significant effect on the key proteins of mTOR pathway, which got inactivated by dephosphorylation. These findings were also confirmed by silencing the proteins (glucose-6-phosphate transporter and hexose-6-phosphate dehydrogenase) responsible for NADPH generation in the ER lumen. However, silencing the key components and addition of metyrapone had different effects on downstream substrates 4EBP1 and p70S6K of mTOR. The applied treatments did not compromise the viability of the cells. Our data suggest that ER stress caused by luminal NADPH depletion activates a pro-survival autophagic mechanism firmly coupled to the activation of mTOR pathway. © 2013 Orsolya Kapuy and Gábor Bánhegyi

    ADJUSTMENT OF HORIZONTAL CONTROL POINT NETWORKS BY PARTITIONING

    Get PDF

    RIGOROUS ADJUSTMENT OF A TRAVERSE

    Get PDF
    In the first part of this paper computation of traverses tied and oriented at both ends was introduced by means of direct observation, based on the principle of the least squares. In the following part formulas were shown for determining measures of accuracy for surch traverses. After the theoretical chapters, applicibility was proved by means of a numerical example

    Mitokondrium, oxidatív stressz és öregedés

    Get PDF
    A z ötvenes években látott napvilágot az öregedés szabad gyökös elmélete, amely szerint a metabolikus útvonalak által termelt reaktív oxigénvegyületek lényeges szerepet kapnak az öregedés folyamatában. A teória később, a mitokond - rium reaktív oxigénvegyületek fő forrásaként történő azonosításával, módosításra került és az öregedés mitokondriá - lis elmélete néven vált ismertté. Ezt követően felvetették egy öregedési „ördögi kör” meglétét, amely szerint a mito - kondriális respiráció során képződő reaktív oxigénvegyületek károsítják a mitokondriális DNS-t, a mitokondriális funkciókat. A mitokondriális diszfunkció következtében megnő a termelődő reaktív oxigénvegyületek mennyisége. Ez az „ördögi kör” a mitokondriális DNS- mutációk felszaporodását válthatja ki, amely öregedéshez vezethet. A kö - zelmúltban létrehozott mtDNS-mutátor egerek mitokondriális DNS-replikációjáért felelős DNS-polimeráz γ exo - nukleáz aktivitását elrontották. Ennek következtében a mitokondriális DNS-ben a szomatikus mutációk száma megnövekedett és egy öregedő fenotípus alakult ki. Érdekes módon a mutáns egerekben sem emelkedett reaktívoxi - génvegyület- termelést , sem oxidatív károsodást nem tapasztaltak, amelyek erősen megkérdőjelezték az „ördögi kör” meglétét

    DEFORMATIONSMESSUNGEN AN DEN AUFLAGERN EINER THEISSBRÜCKE

    Get PDF

    The inter-relationship of ascorbate transport, metabolism and mitochondrial, plastidic respiration.

    Get PDF
    Abstract Significance: Ascorbate, this multifaceted small molecular weight carbohydrate derivative, plays important roles in a range of cellular processes in plant cells, from the regulation of cell cycle, through cell expansion and senescence. Beyond these physiological functions, ascorbate has a critical role in responses to abiotic stresses, such as high light, high salinity, or drought. The biosynthesis, recycling, and intracellular transport are important elements of the balancing of ascorbate level to the always-changing conditions and demands. Recent Advances: A bidirectional tight relationship was described between ascorbate biosynthesis and the mitochondrial electron transfer chain (mETC), since L-galactono-1,4-lactone dehydrogenase (GLDH), the enzyme catalyzing the ultimate step of ascorbate biosynthesis, uses oxidized cytochrome c as the only electron acceptor and has a role in the assembly of Complex I. A similar bidirectional relationship was revealed between the photosynthetic apparatus and ascorbate biosynthesis since the electron flux through the photosynthetic ETC affects the biosynthesis of ascorbate and the level of ascorbate could affect photosynthesis. Critical Issues: The details of this regulatory network of photosynthetic electron transfer, respiratory electron transfer, and ascorbate biosynthesis are still not clear, as are the potential regulatory role and the regulation of intracellular ascorbate transport and fluxes. Future Directions: The elucidation of the role of ascorbate as an important element of the network of photosynthetic, respiratory ETC and tricarboxylic acid cycle will contribute to understanding plant cell responses to different stress conditions. Antioxid. Redox Signal. 00, 000-000

    Uncoupled redox systems in the lumen of the endoplasmic reticulum. Pyridine nucleotides stay reduced in an oxidative environment.

    Get PDF
    The redox state of the intraluminal pyridine nucleotide pool was investigated in rat liver microsomal vesicles. The vesicles showed cortisone reductase activity in the absence of added reductants, which was dependent on the integrity of the membrane. The intraluminal pyridine nucleotide pool could be oxidized by the addition of cortisone or metyrapone but not of glutathione. On the other hand, intraluminal pyridine nucleotides were slightly reduced by cortisol or glucose 6-phosphate, although glutathione was completely ineffective. Redox state of microsomal protein thiols/disulfides was not altered either by manipulations affecting the redox state of pyridine nucleotides or by the addition of NAD(P)+ or NAD(P)H. The uncoupling of the thiol/disulfide and NAD(P)+/NAD(P)H redox couples was not because of their subcompartmentation, because enzymes responsible for the intraluminal oxidoreduction of pyridine nucleotides were distributed equally in smooth and rough microsomal subfractions. Instead, the phenomenon can be explained by the negligible representation of glutathione reductase in the endoplasmic reticulum lumen. The results demonstrated the separate existence of two redox systems in the endoplasmic reticulum lumen, which explains the contemporary functioning of oxidative folding and of powerful reductive reactions

    A cellular stress-directed bistable switch controls the crosstalk between autophagy and apoptosis

    Get PDF
    Decision-making between life and death is one of the most important tasks of cells to maintain their genetic integrity. While the surviving mechanism is driven by Beclin1-dependent autophagy, the suicide processes are controlled by caspases-mediated apoptosis. Interestingly, both these processes share regulators such as Bcl2 and influence each other through feedback loops. The physiological relevance of the crosstalk between autophagy and apoptosis is still unclear. To gain system level insights, we have developed a mathematical model of the autophagy-apoptosis crosstalk. Our analysis reveals that a combination of Bcl2-dependent regulation and feedback loops between Beclin1 and caspases robustly enforces a sequential activation of cellular responses depending upon the intensity and duration of stress levels. The amplifying loops for caspases activation involving Beclin1-dependent inhibition of caspases and cleavage of Beclin1 by caspases (Beclin1 caspases Beclin1; caspases → cleaved Beclin1 → caspases) not only make the system bistable but also help to switch off autophagy at high stress levels. The presence of an additional positive feedback loop between Bcl2 and caspases helps to maintain the caspases activation by making the switch irreversible. Our results provide a framework for further experiments and modelling. © 2013 The Royal Society of Chemistry
    corecore