3 research outputs found

    CONCERTO: Simulating the CO, [CII], and [CI] line emission of galaxies in a 117 deg2 field and the impact of field-to-field variance

    Get PDF
    In the submillimeter regime, spectral line scans and line intensity mapping (LIM) are new promising probes for the cold gas content and star formation rate of galaxies across cosmic time. However, both of these two measurements suffer from field-to-field variance. We study the effect of field-to-field variance on the predicted CO and [CII] power spectra from future LIM experiments such as CONCERTO, as well as on the line luminosity functions (LFs) and the cosmic molecular gas mass density that are currently derived from spectral line scans. We combined a 117 deg2 dark matter lightcone from the Uchuu cosmological simulation with the simulated infrared dusty extragalactic sky (SIDES) approach. The clustering of the dusty galaxies in the SIDES-Uchuu product is validated by reproducing the cosmic infrared background anisotropies measured by Herschel and Planck. We find that in order to constrain the CO LF with an uncertainty below 20%, we need survey sizes of at least 0.1 deg2. Furthermore, accounting for the field-to-field variance using only the Poisson variance can underestimate the total variance by up to 80%. The lower the luminosity is and the larger the survey size is, the higher the level of underestimate. At z < 3, the impact of field-to-field variance on the cosmic molecular gas density can be as high as 40% for the 4.6 arcmin2 field, but drops below 10% for areas larger than 0.2 deg2. However, at z > 3 the variance decreases more slowly with survey size and for example drops below 10% for 1 deg2 fields. Finally, we find that the CO and [CII] LIM power spectra can vary by up to 50% in 1 deg2 fields. This limits the accuracy of the constraints provided by the first 1 deg2 surveys. In addition the level of the shot noise power is always dominated by the sources that are just below the detection thresholds, which limits its potential for deriving number densities of faint [CII] emitters. We provide an analytical formula to estimate the field-to-field variance of current or future LIM experiments given their observed frequency and survey size. The underlying code to derive the field-to-field variance and the full SIDES-Uchuu products (catalogs, cubes, and maps) are publicly available

    Physical Characterization of an Unlensed, Dusty Star-forming Galaxy at z = 5.85

    Get PDF
    We present a physical characterization of MM J100026.36+021527.9 (a.k.a. "Mambo-9"), a dusty star-forming galaxy (DSFG) at z = 5.850 \ub1 0.001. This is the highest-redshift unlensed DSFG (and fourth most distant overall) found to date and is the first source identified in a new 2 mm blank-field map in the COSMOS field. Though identified in prior samples of DSFGs at 850 μm to 1.2 mm with unknown redshift, the detection at 2 mm prompted further follow-up as it indicated a much higher probability that the source was likely to sit at z > 4. Deep observations from the Atacama Large Millimeter and submillimeter Array (ALMA) presented here confirm the redshift through the secure detection of 12CO(J = 6→5) and p-H2O (21,1 → 20,2). Mambo-9 is composed of a pair of galaxies separated by 6 kpc with corresponding star formation rates of 590 M o˙ yr-1 and 220 M o˙ yr-1, total molecular hydrogen gas mass of (1.7 \ub1 0.4) 7 1011 M o˙, dust mass of (1.3 \ub1 0.3) 7 109 M o˙, and stellar mass of (3.2-1.5+1.0) 7 109 M o˙. The total halo mass, (3.3 \ub1 0.8) 7 1012 M o˙, is predicted to exceed 1015 M o˙ by z = 0. The system is undergoing a merger-driven starburst that will increase the stellar mass of the system tenfold in τ depl = 40-80 Myr, converting its large molecular gas reservoir (gas fraction of 96-2+1) into stars. Mambo-9 evaded firm spectroscopic identification for a decade, following a pattern that has emerged for some of the highest-redshift DSFGs found. And yet, the systematic identification of unlensed DSFGs like Mambo-9 is key to measuring the global contribution of obscured star formation to the star formation rate density at z ⪆ 4, the formation of the first massive galaxies, and the formation of interstellar dust at early times (≲1 Gyr)
    corecore