4 research outputs found

    Evaluation of X chromosome inactivation with respect to HLA genetic susceptibility in rheumatoid arthritis and systemic sclerosis

    Get PDF
    Background: Autoimmune diseases, including rheumatoid arthritis (RA) and systemic sclerosis (SSc) are characterized by a strong genetic susceptibility from the Human Leucocyte Antigen (HLA) locus. Additionally, disorders of epigenetic processes, in particular non-random X chromosome inactivation (XCI), have been reported in many female-predominant autoimmune diseases. Here we test the hypothesis that women with RA or SSc who are strongly genetically predisposed are less susceptible to XCI bias. Methods: Using methylation sensitive genotyping of the androgen receptor (AR) gene, XCI profiles were performed in peripheral blood mononuclear cells from 161 women with RA, 96 women with SSc and 100 healthy women. HLA-DRB1 and DQB1 were genotyped. Presence of specific autoantibodies was documented for patients. XCI skewing was defined as having a ratio ≥ 80:20 of cells inactivating the same X chromosome. Results: 110 women with RA, 68 women with SSc, and 69 controls were informative for the AR polymorphism. Among them 40.9% of RA patients and 36.8% of SSc patients had skewed XCI compared to 17.4% of healthy women (P = 0.002 and 0.018, respectively). Presence of RA-susceptibility alleles coding for the "shared epitope" correlated with higher skewing among RA patients (P = 0.002) and such correlation was not observed in other women, healthy or with SSc. Presence of SSc-susceptibility alleles did not correlate with XCI patterns among SSc patients. Conclusion: Data demonstrate XCI skewing in both RA and SSc compared to healthy women. Unexpectedly, skewed XCI occurs more often in women with RA carrying the shared epitope, which usually reflects severe disease. This reinforces the view that loss of mosaicism in peripheral blood may be a consequence of chronic autoimmunity. © 2016 Kanaan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A SNP in Steroid Receptor Coactivator-1 Disrupts a GSK3β Phosphorylation Site and Is Associated with Altered Tamoxifen Response in Bone

    No full text
    The coregulator steroid receptor coactivator (SRC)-1 increases transcriptional activity of the estrogen receptor (ER) in a number of tissues including bone. Mice deficient in SRC-1 are osteopenic and display skeletal resistance to estrogen treatment. SRC-1 is also known to modulate effects of selective ER modulators like tamoxifen. We hypothesized that single nucleotide polymorphisms (SNP) in SRC-1 may impact estrogen and/or tamoxifen action. Because the only nonsynonymous SNP in SRC-1 (rs1804645; P1272S) is located in an activation domain, it was examined for effects on estrogen and tamoxifen action. SRC-1 P1272S showed a decreased ability to coactivate ER compared with wild-type SRC-1 in multiple cell lines. Paradoxically, SRC-1 P1272S had an increased protein half-life. The Pro to Ser change disrupts a putative glycogen synthase 3 (GSK3)β phosphorylation site that was confirmed by in vitro kinase assays. Finally, knockdown of GSK3β increased SRC-1 protein levels, mimicking the loss of phosphorylation at P1272S. These findings are similar to the GSK3β-mediated phospho-ubiquitin clock previously described for the related coregulator SRC-3. To assess the potential clinical significance of this SNP, we examined whether there was an association between SRC-1 P1272S and selective ER modulators response in bone. SRC-1 P1272S was associated with a decrease in hip and lumbar bone mineral density in women receiving tamoxifen treatment, supporting our in vitro findings for decreased ER coactivation. In summary, we have identified a functional genetic variant of SRC-1 with decreased activity, resulting, at least in part, from the loss of a GSK3β phosphorylation site, which was also associated with decreased bone mineral density in tamoxifen-treated women

    Lasers

    No full text

    The Language Planning Situation in Algeria

    No full text
    corecore